From 77a84d0b27b6a5135e91917152f726667cc42d4e Mon Sep 17 00:00:00 2001
From: abhay <abhaygzb15@gmail.com>
Date: Mon, 24 Jun 2024 18:25:38 +0530
Subject: [PATCH] Added Exercise File

---
 .../Bank_Churn_Modelling_Using_Sampling.ipynb | 5381 +++++++++++++++++
 1 file changed, 5381 insertions(+)
 create mode 100644 14_imbalanced/Handling Imbalanced Data In Customer Churn Using ANN/Bank_Churn_Modelling_Using_Sampling.ipynb

diff --git a/14_imbalanced/Handling Imbalanced Data In Customer Churn Using ANN/Bank_Churn_Modelling_Using_Sampling.ipynb b/14_imbalanced/Handling Imbalanced Data In Customer Churn Using ANN/Bank_Churn_Modelling_Using_Sampling.ipynb
new file mode 100644
index 0000000..033e959
--- /dev/null
+++ b/14_imbalanced/Handling Imbalanced Data In Customer Churn Using ANN/Bank_Churn_Modelling_Using_Sampling.ipynb	
@@ -0,0 +1,5381 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "id": "0c9a92f8",
+   "metadata": {},
+   "source": [
+    "# Bank Customer Churn Prediction"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "id": "3222f53d",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import pandas as pd\n",
+    "import numpy as np\n",
+    "import tensorflow as tf\n",
+    "from tensorflow import keras\n",
+    "import warnings\n",
+    "warnings.filterwarnings(\"ignore\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "id": "c02146ba",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "df=pd.read_csv('Churn_Modelling.csv')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "id": "2fba4e16",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>RowNumber</th>\n",
+       "      <th>CustomerId</th>\n",
+       "      <th>Surname</th>\n",
+       "      <th>CreditScore</th>\n",
+       "      <th>Geography</th>\n",
+       "      <th>Gender</th>\n",
+       "      <th>Age</th>\n",
+       "      <th>Tenure</th>\n",
+       "      <th>Balance</th>\n",
+       "      <th>NumOfProducts</th>\n",
+       "      <th>HasCrCard</th>\n",
+       "      <th>IsActiveMember</th>\n",
+       "      <th>EstimatedSalary</th>\n",
+       "      <th>Exited</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>1</td>\n",
+       "      <td>15634602</td>\n",
+       "      <td>Hargrave</td>\n",
+       "      <td>619</td>\n",
+       "      <td>France</td>\n",
+       "      <td>Female</td>\n",
+       "      <td>42</td>\n",
+       "      <td>2</td>\n",
+       "      <td>0.00</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>101348.88</td>\n",
+       "      <td>1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>2</td>\n",
+       "      <td>15647311</td>\n",
+       "      <td>Hill</td>\n",
+       "      <td>608</td>\n",
+       "      <td>Spain</td>\n",
+       "      <td>Female</td>\n",
+       "      <td>41</td>\n",
+       "      <td>1</td>\n",
+       "      <td>83807.86</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>112542.58</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>3</td>\n",
+       "      <td>15619304</td>\n",
+       "      <td>Onio</td>\n",
+       "      <td>502</td>\n",
+       "      <td>France</td>\n",
+       "      <td>Female</td>\n",
+       "      <td>42</td>\n",
+       "      <td>8</td>\n",
+       "      <td>159660.80</td>\n",
+       "      <td>3</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>113931.57</td>\n",
+       "      <td>1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>4</td>\n",
+       "      <td>15701354</td>\n",
+       "      <td>Boni</td>\n",
+       "      <td>699</td>\n",
+       "      <td>France</td>\n",
+       "      <td>Female</td>\n",
+       "      <td>39</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.00</td>\n",
+       "      <td>2</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>93826.63</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>5</td>\n",
+       "      <td>15737888</td>\n",
+       "      <td>Mitchell</td>\n",
+       "      <td>850</td>\n",
+       "      <td>Spain</td>\n",
+       "      <td>Female</td>\n",
+       "      <td>43</td>\n",
+       "      <td>2</td>\n",
+       "      <td>125510.82</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>79084.10</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>...</th>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9995</th>\n",
+       "      <td>9996</td>\n",
+       "      <td>15606229</td>\n",
+       "      <td>Obijiaku</td>\n",
+       "      <td>771</td>\n",
+       "      <td>France</td>\n",
+       "      <td>Male</td>\n",
+       "      <td>39</td>\n",
+       "      <td>5</td>\n",
+       "      <td>0.00</td>\n",
+       "      <td>2</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>96270.64</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9996</th>\n",
+       "      <td>9997</td>\n",
+       "      <td>15569892</td>\n",
+       "      <td>Johnstone</td>\n",
+       "      <td>516</td>\n",
+       "      <td>France</td>\n",
+       "      <td>Male</td>\n",
+       "      <td>35</td>\n",
+       "      <td>10</td>\n",
+       "      <td>57369.61</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>101699.77</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9997</th>\n",
+       "      <td>9998</td>\n",
+       "      <td>15584532</td>\n",
+       "      <td>Liu</td>\n",
+       "      <td>709</td>\n",
+       "      <td>France</td>\n",
+       "      <td>Female</td>\n",
+       "      <td>36</td>\n",
+       "      <td>7</td>\n",
+       "      <td>0.00</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>42085.58</td>\n",
+       "      <td>1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9998</th>\n",
+       "      <td>9999</td>\n",
+       "      <td>15682355</td>\n",
+       "      <td>Sabbatini</td>\n",
+       "      <td>772</td>\n",
+       "      <td>Germany</td>\n",
+       "      <td>Male</td>\n",
+       "      <td>42</td>\n",
+       "      <td>3</td>\n",
+       "      <td>75075.31</td>\n",
+       "      <td>2</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>92888.52</td>\n",
+       "      <td>1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9999</th>\n",
+       "      <td>10000</td>\n",
+       "      <td>15628319</td>\n",
+       "      <td>Walker</td>\n",
+       "      <td>792</td>\n",
+       "      <td>France</td>\n",
+       "      <td>Female</td>\n",
+       "      <td>28</td>\n",
+       "      <td>4</td>\n",
+       "      <td>130142.79</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>38190.78</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "<p>10000 rows × 14 columns</p>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "      RowNumber  CustomerId    Surname  CreditScore Geography  Gender  Age  \\\n",
+       "0             1    15634602   Hargrave          619    France  Female   42   \n",
+       "1             2    15647311       Hill          608     Spain  Female   41   \n",
+       "2             3    15619304       Onio          502    France  Female   42   \n",
+       "3             4    15701354       Boni          699    France  Female   39   \n",
+       "4             5    15737888   Mitchell          850     Spain  Female   43   \n",
+       "...         ...         ...        ...          ...       ...     ...  ...   \n",
+       "9995       9996    15606229   Obijiaku          771    France    Male   39   \n",
+       "9996       9997    15569892  Johnstone          516    France    Male   35   \n",
+       "9997       9998    15584532        Liu          709    France  Female   36   \n",
+       "9998       9999    15682355  Sabbatini          772   Germany    Male   42   \n",
+       "9999      10000    15628319     Walker          792    France  Female   28   \n",
+       "\n",
+       "      Tenure    Balance  NumOfProducts  HasCrCard  IsActiveMember  \\\n",
+       "0          2       0.00              1          1               1   \n",
+       "1          1   83807.86              1          0               1   \n",
+       "2          8  159660.80              3          1               0   \n",
+       "3          1       0.00              2          0               0   \n",
+       "4          2  125510.82              1          1               1   \n",
+       "...      ...        ...            ...        ...             ...   \n",
+       "9995       5       0.00              2          1               0   \n",
+       "9996      10   57369.61              1          1               1   \n",
+       "9997       7       0.00              1          0               1   \n",
+       "9998       3   75075.31              2          1               0   \n",
+       "9999       4  130142.79              1          1               0   \n",
+       "\n",
+       "      EstimatedSalary  Exited  \n",
+       "0           101348.88       1  \n",
+       "1           112542.58       0  \n",
+       "2           113931.57       1  \n",
+       "3            93826.63       0  \n",
+       "4            79084.10       0  \n",
+       "...               ...     ...  \n",
+       "9995         96270.64       0  \n",
+       "9996        101699.77       0  \n",
+       "9997         42085.58       1  \n",
+       "9998         92888.52       1  \n",
+       "9999         38190.78       0  \n",
+       "\n",
+       "[10000 rows x 14 columns]"
+      ]
+     },
+     "execution_count": 3,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "id": "3c900477",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>RowNumber</th>\n",
+       "      <th>CustomerId</th>\n",
+       "      <th>Surname</th>\n",
+       "      <th>CreditScore</th>\n",
+       "      <th>Geography</th>\n",
+       "      <th>Gender</th>\n",
+       "      <th>Age</th>\n",
+       "      <th>Tenure</th>\n",
+       "      <th>Balance</th>\n",
+       "      <th>NumOfProducts</th>\n",
+       "      <th>HasCrCard</th>\n",
+       "      <th>IsActiveMember</th>\n",
+       "      <th>EstimatedSalary</th>\n",
+       "      <th>Exited</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>9995</th>\n",
+       "      <td>9996</td>\n",
+       "      <td>15606229</td>\n",
+       "      <td>Obijiaku</td>\n",
+       "      <td>771</td>\n",
+       "      <td>France</td>\n",
+       "      <td>Male</td>\n",
+       "      <td>39</td>\n",
+       "      <td>5</td>\n",
+       "      <td>0.00</td>\n",
+       "      <td>2</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>96270.64</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9996</th>\n",
+       "      <td>9997</td>\n",
+       "      <td>15569892</td>\n",
+       "      <td>Johnstone</td>\n",
+       "      <td>516</td>\n",
+       "      <td>France</td>\n",
+       "      <td>Male</td>\n",
+       "      <td>35</td>\n",
+       "      <td>10</td>\n",
+       "      <td>57369.61</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>101699.77</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9997</th>\n",
+       "      <td>9998</td>\n",
+       "      <td>15584532</td>\n",
+       "      <td>Liu</td>\n",
+       "      <td>709</td>\n",
+       "      <td>France</td>\n",
+       "      <td>Female</td>\n",
+       "      <td>36</td>\n",
+       "      <td>7</td>\n",
+       "      <td>0.00</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>42085.58</td>\n",
+       "      <td>1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9998</th>\n",
+       "      <td>9999</td>\n",
+       "      <td>15682355</td>\n",
+       "      <td>Sabbatini</td>\n",
+       "      <td>772</td>\n",
+       "      <td>Germany</td>\n",
+       "      <td>Male</td>\n",
+       "      <td>42</td>\n",
+       "      <td>3</td>\n",
+       "      <td>75075.31</td>\n",
+       "      <td>2</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>92888.52</td>\n",
+       "      <td>1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9999</th>\n",
+       "      <td>10000</td>\n",
+       "      <td>15628319</td>\n",
+       "      <td>Walker</td>\n",
+       "      <td>792</td>\n",
+       "      <td>France</td>\n",
+       "      <td>Female</td>\n",
+       "      <td>28</td>\n",
+       "      <td>4</td>\n",
+       "      <td>130142.79</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>38190.78</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "      RowNumber  CustomerId    Surname  CreditScore Geography  Gender  Age  \\\n",
+       "9995       9996    15606229   Obijiaku          771    France    Male   39   \n",
+       "9996       9997    15569892  Johnstone          516    France    Male   35   \n",
+       "9997       9998    15584532        Liu          709    France  Female   36   \n",
+       "9998       9999    15682355  Sabbatini          772   Germany    Male   42   \n",
+       "9999      10000    15628319     Walker          792    France  Female   28   \n",
+       "\n",
+       "      Tenure    Balance  NumOfProducts  HasCrCard  IsActiveMember  \\\n",
+       "9995       5       0.00              2          1               0   \n",
+       "9996      10   57369.61              1          1               1   \n",
+       "9997       7       0.00              1          0               1   \n",
+       "9998       3   75075.31              2          1               0   \n",
+       "9999       4  130142.79              1          1               0   \n",
+       "\n",
+       "      EstimatedSalary  Exited  \n",
+       "9995         96270.64       0  \n",
+       "9996        101699.77       0  \n",
+       "9997         42085.58       1  \n",
+       "9998         92888.52       1  \n",
+       "9999         38190.78       0  "
+      ]
+     },
+     "execution_count": 4,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df.tail()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "id": "1cfe8250",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "Index(['RowNumber', 'CustomerId', 'Surname', 'CreditScore', 'Geography',\n",
+       "       'Gender', 'Age', 'Tenure', 'Balance', 'NumOfProducts', 'HasCrCard',\n",
+       "       'IsActiveMember', 'EstimatedSalary', 'Exited'],\n",
+       "      dtype='object')"
+      ]
+     },
+     "execution_count": 5,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df.columns"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "id": "de72c6db",
+   "metadata": {
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "RowNumber\n",
+      "1        1\n",
+      "6671     1\n",
+      "6664     1\n",
+      "6665     1\n",
+      "6666     1\n",
+      "        ..\n",
+      "3334     1\n",
+      "3335     1\n",
+      "3336     1\n",
+      "3337     1\n",
+      "10000    1\n",
+      "Name: count, Length: 10000, dtype: int64\n",
+      "\n",
+      "\n",
+      "CustomerId\n",
+      "15634602    1\n",
+      "15667932    1\n",
+      "15766185    1\n",
+      "15667632    1\n",
+      "15599024    1\n",
+      "           ..\n",
+      "15599078    1\n",
+      "15702300    1\n",
+      "15660735    1\n",
+      "15671390    1\n",
+      "15628319    1\n",
+      "Name: count, Length: 10000, dtype: int64\n",
+      "\n",
+      "\n",
+      "Surname\n",
+      "Smith       32\n",
+      "Scott       29\n",
+      "Martin      29\n",
+      "Walker      28\n",
+      "Brown       26\n",
+      "            ..\n",
+      "Izmailov     1\n",
+      "Bold         1\n",
+      "Bonham       1\n",
+      "Poninski     1\n",
+      "Burbidge     1\n",
+      "Name: count, Length: 2932, dtype: int64\n",
+      "\n",
+      "\n",
+      "CreditScore\n",
+      "850    233\n",
+      "678     63\n",
+      "655     54\n",
+      "705     53\n",
+      "667     53\n",
+      "      ... \n",
+      "404      1\n",
+      "351      1\n",
+      "365      1\n",
+      "417      1\n",
+      "419      1\n",
+      "Name: count, Length: 460, dtype: int64\n",
+      "\n",
+      "\n",
+      "Geography\n",
+      "France     5014\n",
+      "Germany    2509\n",
+      "Spain      2477\n",
+      "Name: count, dtype: int64\n",
+      "\n",
+      "\n",
+      "Gender\n",
+      "Male      5457\n",
+      "Female    4543\n",
+      "Name: count, dtype: int64\n",
+      "\n",
+      "\n",
+      "Age\n",
+      "37    478\n",
+      "38    477\n",
+      "35    474\n",
+      "36    456\n",
+      "34    447\n",
+      "     ... \n",
+      "92      2\n",
+      "82      1\n",
+      "88      1\n",
+      "85      1\n",
+      "83      1\n",
+      "Name: count, Length: 70, dtype: int64\n",
+      "\n",
+      "\n",
+      "Tenure\n",
+      "2     1048\n",
+      "1     1035\n",
+      "7     1028\n",
+      "8     1025\n",
+      "5     1012\n",
+      "3     1009\n",
+      "4      989\n",
+      "9      984\n",
+      "6      967\n",
+      "10     490\n",
+      "0      413\n",
+      "Name: count, dtype: int64\n",
+      "\n",
+      "\n",
+      "Balance\n",
+      "0.00         3617\n",
+      "130170.82       2\n",
+      "105473.74       2\n",
+      "85304.27        1\n",
+      "159397.75       1\n",
+      "             ... \n",
+      "81556.89        1\n",
+      "112687.69       1\n",
+      "108698.96       1\n",
+      "238387.56       1\n",
+      "130142.79       1\n",
+      "Name: count, Length: 6382, dtype: int64\n",
+      "\n",
+      "\n",
+      "NumOfProducts\n",
+      "1    5084\n",
+      "2    4590\n",
+      "3     266\n",
+      "4      60\n",
+      "Name: count, dtype: int64\n",
+      "\n",
+      "\n",
+      "HasCrCard\n",
+      "1    7055\n",
+      "0    2945\n",
+      "Name: count, dtype: int64\n",
+      "\n",
+      "\n",
+      "IsActiveMember\n",
+      "1    5151\n",
+      "0    4849\n",
+      "Name: count, dtype: int64\n",
+      "\n",
+      "\n",
+      "EstimatedSalary\n",
+      "24924.92     2\n",
+      "101348.88    1\n",
+      "55313.44     1\n",
+      "72500.68     1\n",
+      "182692.80    1\n",
+      "            ..\n",
+      "120893.07    1\n",
+      "188377.21    1\n",
+      "55902.93     1\n",
+      "4523.74      1\n",
+      "38190.78     1\n",
+      "Name: count, Length: 9999, dtype: int64\n",
+      "\n",
+      "\n",
+      "Exited\n",
+      "0    7963\n",
+      "1    2037\n",
+      "Name: count, dtype: int64\n",
+      "\n",
+      "\n"
+     ]
+    }
+   ],
+   "source": [
+    "def find_value_counts(df):\n",
+    "    for i in df.columns:\n",
+    "        print(f'{df[i].value_counts()}')\n",
+    "        print(\"\\n\")\n",
+    "find_value_counts(df)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "id": "f905b89f",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "RowNumber          10000\n",
+       "CustomerId         10000\n",
+       "Surname             2932\n",
+       "CreditScore          460\n",
+       "Geography              3\n",
+       "Gender                 2\n",
+       "Age                   70\n",
+       "Tenure                11\n",
+       "Balance             6382\n",
+       "NumOfProducts          4\n",
+       "HasCrCard              2\n",
+       "IsActiveMember         2\n",
+       "EstimatedSalary     9999\n",
+       "Exited                 2\n",
+       "dtype: int64"
+      ]
+     },
+     "execution_count": 7,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df.nunique()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "id": "84b03be2",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "RowNumber          0\n",
+       "CustomerId         0\n",
+       "Surname            0\n",
+       "CreditScore        0\n",
+       "Geography          0\n",
+       "Gender             0\n",
+       "Age                0\n",
+       "Tenure             0\n",
+       "Balance            0\n",
+       "NumOfProducts      0\n",
+       "HasCrCard          0\n",
+       "IsActiveMember     0\n",
+       "EstimatedSalary    0\n",
+       "Exited             0\n",
+       "dtype: int64"
+      ]
+     },
+     "execution_count": 8,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df.isnull().sum()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "id": "7891afc9",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "RowNumber            int64\n",
+       "CustomerId           int64\n",
+       "Surname             object\n",
+       "CreditScore          int64\n",
+       "Geography           object\n",
+       "Gender              object\n",
+       "Age                  int64\n",
+       "Tenure               int64\n",
+       "Balance            float64\n",
+       "NumOfProducts        int64\n",
+       "HasCrCard            int64\n",
+       "IsActiveMember       int64\n",
+       "EstimatedSalary    float64\n",
+       "Exited               int64\n",
+       "dtype: object"
+      ]
+     },
+     "execution_count": 9,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df.dtypes"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "id": "6471d362",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>RowNumber</th>\n",
+       "      <th>CustomerId</th>\n",
+       "      <th>CreditScore</th>\n",
+       "      <th>Age</th>\n",
+       "      <th>Tenure</th>\n",
+       "      <th>Balance</th>\n",
+       "      <th>NumOfProducts</th>\n",
+       "      <th>HasCrCard</th>\n",
+       "      <th>IsActiveMember</th>\n",
+       "      <th>EstimatedSalary</th>\n",
+       "      <th>Exited</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>count</th>\n",
+       "      <td>10000.00000</td>\n",
+       "      <td>1.000000e+04</td>\n",
+       "      <td>10000.000000</td>\n",
+       "      <td>10000.000000</td>\n",
+       "      <td>10000.000000</td>\n",
+       "      <td>10000.000000</td>\n",
+       "      <td>10000.000000</td>\n",
+       "      <td>10000.00000</td>\n",
+       "      <td>10000.000000</td>\n",
+       "      <td>10000.000000</td>\n",
+       "      <td>10000.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>mean</th>\n",
+       "      <td>5000.50000</td>\n",
+       "      <td>1.569094e+07</td>\n",
+       "      <td>650.528800</td>\n",
+       "      <td>38.921800</td>\n",
+       "      <td>5.012800</td>\n",
+       "      <td>76485.889288</td>\n",
+       "      <td>1.530200</td>\n",
+       "      <td>0.70550</td>\n",
+       "      <td>0.515100</td>\n",
+       "      <td>100090.239881</td>\n",
+       "      <td>0.203700</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>std</th>\n",
+       "      <td>2886.89568</td>\n",
+       "      <td>7.193619e+04</td>\n",
+       "      <td>96.653299</td>\n",
+       "      <td>10.487806</td>\n",
+       "      <td>2.892174</td>\n",
+       "      <td>62397.405202</td>\n",
+       "      <td>0.581654</td>\n",
+       "      <td>0.45584</td>\n",
+       "      <td>0.499797</td>\n",
+       "      <td>57510.492818</td>\n",
+       "      <td>0.402769</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>min</th>\n",
+       "      <td>1.00000</td>\n",
+       "      <td>1.556570e+07</td>\n",
+       "      <td>350.000000</td>\n",
+       "      <td>18.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>1.000000</td>\n",
+       "      <td>0.00000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>11.580000</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>25%</th>\n",
+       "      <td>2500.75000</td>\n",
+       "      <td>1.562853e+07</td>\n",
+       "      <td>584.000000</td>\n",
+       "      <td>32.000000</td>\n",
+       "      <td>3.000000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>1.000000</td>\n",
+       "      <td>0.00000</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>51002.110000</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>50%</th>\n",
+       "      <td>5000.50000</td>\n",
+       "      <td>1.569074e+07</td>\n",
+       "      <td>652.000000</td>\n",
+       "      <td>37.000000</td>\n",
+       "      <td>5.000000</td>\n",
+       "      <td>97198.540000</td>\n",
+       "      <td>1.000000</td>\n",
+       "      <td>1.00000</td>\n",
+       "      <td>1.000000</td>\n",
+       "      <td>100193.915000</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>75%</th>\n",
+       "      <td>7500.25000</td>\n",
+       "      <td>1.575323e+07</td>\n",
+       "      <td>718.000000</td>\n",
+       "      <td>44.000000</td>\n",
+       "      <td>7.000000</td>\n",
+       "      <td>127644.240000</td>\n",
+       "      <td>2.000000</td>\n",
+       "      <td>1.00000</td>\n",
+       "      <td>1.000000</td>\n",
+       "      <td>149388.247500</td>\n",
+       "      <td>0.000000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>max</th>\n",
+       "      <td>10000.00000</td>\n",
+       "      <td>1.581569e+07</td>\n",
+       "      <td>850.000000</td>\n",
+       "      <td>92.000000</td>\n",
+       "      <td>10.000000</td>\n",
+       "      <td>250898.090000</td>\n",
+       "      <td>4.000000</td>\n",
+       "      <td>1.00000</td>\n",
+       "      <td>1.000000</td>\n",
+       "      <td>199992.480000</td>\n",
+       "      <td>1.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "         RowNumber    CustomerId   CreditScore           Age        Tenure  \\\n",
+       "count  10000.00000  1.000000e+04  10000.000000  10000.000000  10000.000000   \n",
+       "mean    5000.50000  1.569094e+07    650.528800     38.921800      5.012800   \n",
+       "std     2886.89568  7.193619e+04     96.653299     10.487806      2.892174   \n",
+       "min        1.00000  1.556570e+07    350.000000     18.000000      0.000000   \n",
+       "25%     2500.75000  1.562853e+07    584.000000     32.000000      3.000000   \n",
+       "50%     5000.50000  1.569074e+07    652.000000     37.000000      5.000000   \n",
+       "75%     7500.25000  1.575323e+07    718.000000     44.000000      7.000000   \n",
+       "max    10000.00000  1.581569e+07    850.000000     92.000000     10.000000   \n",
+       "\n",
+       "             Balance  NumOfProducts    HasCrCard  IsActiveMember  \\\n",
+       "count   10000.000000   10000.000000  10000.00000    10000.000000   \n",
+       "mean    76485.889288       1.530200      0.70550        0.515100   \n",
+       "std     62397.405202       0.581654      0.45584        0.499797   \n",
+       "min         0.000000       1.000000      0.00000        0.000000   \n",
+       "25%         0.000000       1.000000      0.00000        0.000000   \n",
+       "50%     97198.540000       1.000000      1.00000        1.000000   \n",
+       "75%    127644.240000       2.000000      1.00000        1.000000   \n",
+       "max    250898.090000       4.000000      1.00000        1.000000   \n",
+       "\n",
+       "       EstimatedSalary        Exited  \n",
+       "count     10000.000000  10000.000000  \n",
+       "mean     100090.239881      0.203700  \n",
+       "std       57510.492818      0.402769  \n",
+       "min          11.580000      0.000000  \n",
+       "25%       51002.110000      0.000000  \n",
+       "50%      100193.915000      0.000000  \n",
+       "75%      149388.247500      0.000000  \n",
+       "max      199992.480000      1.000000  "
+      ]
+     },
+     "execution_count": 10,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df.describe()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "id": "36d8b7b3",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "<class 'pandas.core.frame.DataFrame'>\n",
+      "RangeIndex: 10000 entries, 0 to 9999\n",
+      "Data columns (total 14 columns):\n",
+      " #   Column           Non-Null Count  Dtype  \n",
+      "---  ------           --------------  -----  \n",
+      " 0   RowNumber        10000 non-null  int64  \n",
+      " 1   CustomerId       10000 non-null  int64  \n",
+      " 2   Surname          10000 non-null  object \n",
+      " 3   CreditScore      10000 non-null  int64  \n",
+      " 4   Geography        10000 non-null  object \n",
+      " 5   Gender           10000 non-null  object \n",
+      " 6   Age              10000 non-null  int64  \n",
+      " 7   Tenure           10000 non-null  int64  \n",
+      " 8   Balance          10000 non-null  float64\n",
+      " 9   NumOfProducts    10000 non-null  int64  \n",
+      " 10  HasCrCard        10000 non-null  int64  \n",
+      " 11  IsActiveMember   10000 non-null  int64  \n",
+      " 12  EstimatedSalary  10000 non-null  float64\n",
+      " 13  Exited           10000 non-null  int64  \n",
+      "dtypes: float64(2), int64(9), object(3)\n",
+      "memory usage: 1.1+ MB\n"
+     ]
+    }
+   ],
+   "source": [
+    "df.info()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "id": "374968cc",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>RowNumber</th>\n",
+       "      <th>CustomerId</th>\n",
+       "      <th>Surname</th>\n",
+       "      <th>CreditScore</th>\n",
+       "      <th>Geography</th>\n",
+       "      <th>Gender</th>\n",
+       "      <th>Age</th>\n",
+       "      <th>Tenure</th>\n",
+       "      <th>Balance</th>\n",
+       "      <th>NumOfProducts</th>\n",
+       "      <th>HasCrCard</th>\n",
+       "      <th>IsActiveMember</th>\n",
+       "      <th>EstimatedSalary</th>\n",
+       "      <th>Exited</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>1</td>\n",
+       "      <td>15634602</td>\n",
+       "      <td>Hargrave</td>\n",
+       "      <td>619</td>\n",
+       "      <td>France</td>\n",
+       "      <td>Female</td>\n",
+       "      <td>42</td>\n",
+       "      <td>2</td>\n",
+       "      <td>0.00</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>101348.88</td>\n",
+       "      <td>1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>2</td>\n",
+       "      <td>15647311</td>\n",
+       "      <td>Hill</td>\n",
+       "      <td>608</td>\n",
+       "      <td>Spain</td>\n",
+       "      <td>Female</td>\n",
+       "      <td>41</td>\n",
+       "      <td>1</td>\n",
+       "      <td>83807.86</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>112542.58</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>3</td>\n",
+       "      <td>15619304</td>\n",
+       "      <td>Onio</td>\n",
+       "      <td>502</td>\n",
+       "      <td>France</td>\n",
+       "      <td>Female</td>\n",
+       "      <td>42</td>\n",
+       "      <td>8</td>\n",
+       "      <td>159660.80</td>\n",
+       "      <td>3</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>113931.57</td>\n",
+       "      <td>1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>4</td>\n",
+       "      <td>15701354</td>\n",
+       "      <td>Boni</td>\n",
+       "      <td>699</td>\n",
+       "      <td>France</td>\n",
+       "      <td>Female</td>\n",
+       "      <td>39</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.00</td>\n",
+       "      <td>2</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>93826.63</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>5</td>\n",
+       "      <td>15737888</td>\n",
+       "      <td>Mitchell</td>\n",
+       "      <td>850</td>\n",
+       "      <td>Spain</td>\n",
+       "      <td>Female</td>\n",
+       "      <td>43</td>\n",
+       "      <td>2</td>\n",
+       "      <td>125510.82</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>79084.10</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>...</th>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9995</th>\n",
+       "      <td>9996</td>\n",
+       "      <td>15606229</td>\n",
+       "      <td>Obijiaku</td>\n",
+       "      <td>771</td>\n",
+       "      <td>France</td>\n",
+       "      <td>Male</td>\n",
+       "      <td>39</td>\n",
+       "      <td>5</td>\n",
+       "      <td>0.00</td>\n",
+       "      <td>2</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>96270.64</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9996</th>\n",
+       "      <td>9997</td>\n",
+       "      <td>15569892</td>\n",
+       "      <td>Johnstone</td>\n",
+       "      <td>516</td>\n",
+       "      <td>France</td>\n",
+       "      <td>Male</td>\n",
+       "      <td>35</td>\n",
+       "      <td>10</td>\n",
+       "      <td>57369.61</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>101699.77</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9997</th>\n",
+       "      <td>9998</td>\n",
+       "      <td>15584532</td>\n",
+       "      <td>Liu</td>\n",
+       "      <td>709</td>\n",
+       "      <td>France</td>\n",
+       "      <td>Female</td>\n",
+       "      <td>36</td>\n",
+       "      <td>7</td>\n",
+       "      <td>0.00</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>42085.58</td>\n",
+       "      <td>1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9998</th>\n",
+       "      <td>9999</td>\n",
+       "      <td>15682355</td>\n",
+       "      <td>Sabbatini</td>\n",
+       "      <td>772</td>\n",
+       "      <td>Germany</td>\n",
+       "      <td>Male</td>\n",
+       "      <td>42</td>\n",
+       "      <td>3</td>\n",
+       "      <td>75075.31</td>\n",
+       "      <td>2</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>92888.52</td>\n",
+       "      <td>1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9999</th>\n",
+       "      <td>10000</td>\n",
+       "      <td>15628319</td>\n",
+       "      <td>Walker</td>\n",
+       "      <td>792</td>\n",
+       "      <td>France</td>\n",
+       "      <td>Female</td>\n",
+       "      <td>28</td>\n",
+       "      <td>4</td>\n",
+       "      <td>130142.79</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>38190.78</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "<p>10000 rows × 14 columns</p>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "      RowNumber  CustomerId    Surname  CreditScore Geography  Gender  Age  \\\n",
+       "0             1    15634602   Hargrave          619    France  Female   42   \n",
+       "1             2    15647311       Hill          608     Spain  Female   41   \n",
+       "2             3    15619304       Onio          502    France  Female   42   \n",
+       "3             4    15701354       Boni          699    France  Female   39   \n",
+       "4             5    15737888   Mitchell          850     Spain  Female   43   \n",
+       "...         ...         ...        ...          ...       ...     ...  ...   \n",
+       "9995       9996    15606229   Obijiaku          771    France    Male   39   \n",
+       "9996       9997    15569892  Johnstone          516    France    Male   35   \n",
+       "9997       9998    15584532        Liu          709    France  Female   36   \n",
+       "9998       9999    15682355  Sabbatini          772   Germany    Male   42   \n",
+       "9999      10000    15628319     Walker          792    France  Female   28   \n",
+       "\n",
+       "      Tenure    Balance  NumOfProducts  HasCrCard  IsActiveMember  \\\n",
+       "0          2       0.00              1          1               1   \n",
+       "1          1   83807.86              1          0               1   \n",
+       "2          8  159660.80              3          1               0   \n",
+       "3          1       0.00              2          0               0   \n",
+       "4          2  125510.82              1          1               1   \n",
+       "...      ...        ...            ...        ...             ...   \n",
+       "9995       5       0.00              2          1               0   \n",
+       "9996      10   57369.61              1          1               1   \n",
+       "9997       7       0.00              1          0               1   \n",
+       "9998       3   75075.31              2          1               0   \n",
+       "9999       4  130142.79              1          1               0   \n",
+       "\n",
+       "      EstimatedSalary  Exited  \n",
+       "0           101348.88       1  \n",
+       "1           112542.58       0  \n",
+       "2           113931.57       1  \n",
+       "3            93826.63       0  \n",
+       "4            79084.10       0  \n",
+       "...               ...     ...  \n",
+       "9995         96270.64       0  \n",
+       "9996        101699.77       0  \n",
+       "9997         42085.58       1  \n",
+       "9998         92888.52       1  \n",
+       "9999         38190.78       0  \n",
+       "\n",
+       "[10000 rows x 14 columns]"
+      ]
+     },
+     "execution_count": 12,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 13,
+   "id": "6e15636d",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>RowNumber</th>\n",
+       "      <th>CustomerId</th>\n",
+       "      <th>Surname</th>\n",
+       "      <th>CreditScore</th>\n",
+       "      <th>Geography</th>\n",
+       "      <th>Gender</th>\n",
+       "      <th>Age</th>\n",
+       "      <th>Tenure</th>\n",
+       "      <th>Balance</th>\n",
+       "      <th>NumOfProducts</th>\n",
+       "      <th>HasCrCard</th>\n",
+       "      <th>IsActiveMember</th>\n",
+       "      <th>EstimatedSalary</th>\n",
+       "      <th>Exited</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>1</td>\n",
+       "      <td>15634602</td>\n",
+       "      <td>Hargrave</td>\n",
+       "      <td>619</td>\n",
+       "      <td>France</td>\n",
+       "      <td>1</td>\n",
+       "      <td>42</td>\n",
+       "      <td>2</td>\n",
+       "      <td>0.00</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>101348.88</td>\n",
+       "      <td>1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>2</td>\n",
+       "      <td>15647311</td>\n",
+       "      <td>Hill</td>\n",
+       "      <td>608</td>\n",
+       "      <td>Spain</td>\n",
+       "      <td>1</td>\n",
+       "      <td>41</td>\n",
+       "      <td>1</td>\n",
+       "      <td>83807.86</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>112542.58</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>3</td>\n",
+       "      <td>15619304</td>\n",
+       "      <td>Onio</td>\n",
+       "      <td>502</td>\n",
+       "      <td>France</td>\n",
+       "      <td>1</td>\n",
+       "      <td>42</td>\n",
+       "      <td>8</td>\n",
+       "      <td>159660.80</td>\n",
+       "      <td>3</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>113931.57</td>\n",
+       "      <td>1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>4</td>\n",
+       "      <td>15701354</td>\n",
+       "      <td>Boni</td>\n",
+       "      <td>699</td>\n",
+       "      <td>France</td>\n",
+       "      <td>1</td>\n",
+       "      <td>39</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.00</td>\n",
+       "      <td>2</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>93826.63</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>5</td>\n",
+       "      <td>15737888</td>\n",
+       "      <td>Mitchell</td>\n",
+       "      <td>850</td>\n",
+       "      <td>Spain</td>\n",
+       "      <td>1</td>\n",
+       "      <td>43</td>\n",
+       "      <td>2</td>\n",
+       "      <td>125510.82</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>79084.10</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>...</th>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9995</th>\n",
+       "      <td>9996</td>\n",
+       "      <td>15606229</td>\n",
+       "      <td>Obijiaku</td>\n",
+       "      <td>771</td>\n",
+       "      <td>France</td>\n",
+       "      <td>0</td>\n",
+       "      <td>39</td>\n",
+       "      <td>5</td>\n",
+       "      <td>0.00</td>\n",
+       "      <td>2</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>96270.64</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9996</th>\n",
+       "      <td>9997</td>\n",
+       "      <td>15569892</td>\n",
+       "      <td>Johnstone</td>\n",
+       "      <td>516</td>\n",
+       "      <td>France</td>\n",
+       "      <td>0</td>\n",
+       "      <td>35</td>\n",
+       "      <td>10</td>\n",
+       "      <td>57369.61</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>101699.77</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9997</th>\n",
+       "      <td>9998</td>\n",
+       "      <td>15584532</td>\n",
+       "      <td>Liu</td>\n",
+       "      <td>709</td>\n",
+       "      <td>France</td>\n",
+       "      <td>1</td>\n",
+       "      <td>36</td>\n",
+       "      <td>7</td>\n",
+       "      <td>0.00</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>42085.58</td>\n",
+       "      <td>1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9998</th>\n",
+       "      <td>9999</td>\n",
+       "      <td>15682355</td>\n",
+       "      <td>Sabbatini</td>\n",
+       "      <td>772</td>\n",
+       "      <td>Germany</td>\n",
+       "      <td>0</td>\n",
+       "      <td>42</td>\n",
+       "      <td>3</td>\n",
+       "      <td>75075.31</td>\n",
+       "      <td>2</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>92888.52</td>\n",
+       "      <td>1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9999</th>\n",
+       "      <td>10000</td>\n",
+       "      <td>15628319</td>\n",
+       "      <td>Walker</td>\n",
+       "      <td>792</td>\n",
+       "      <td>France</td>\n",
+       "      <td>1</td>\n",
+       "      <td>28</td>\n",
+       "      <td>4</td>\n",
+       "      <td>130142.79</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>38190.78</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "<p>10000 rows × 14 columns</p>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "      RowNumber  CustomerId    Surname  CreditScore Geography  Gender  Age  \\\n",
+       "0             1    15634602   Hargrave          619    France       1   42   \n",
+       "1             2    15647311       Hill          608     Spain       1   41   \n",
+       "2             3    15619304       Onio          502    France       1   42   \n",
+       "3             4    15701354       Boni          699    France       1   39   \n",
+       "4             5    15737888   Mitchell          850     Spain       1   43   \n",
+       "...         ...         ...        ...          ...       ...     ...  ...   \n",
+       "9995       9996    15606229   Obijiaku          771    France       0   39   \n",
+       "9996       9997    15569892  Johnstone          516    France       0   35   \n",
+       "9997       9998    15584532        Liu          709    France       1   36   \n",
+       "9998       9999    15682355  Sabbatini          772   Germany       0   42   \n",
+       "9999      10000    15628319     Walker          792    France       1   28   \n",
+       "\n",
+       "      Tenure    Balance  NumOfProducts  HasCrCard  IsActiveMember  \\\n",
+       "0          2       0.00              1          1               1   \n",
+       "1          1   83807.86              1          0               1   \n",
+       "2          8  159660.80              3          1               0   \n",
+       "3          1       0.00              2          0               0   \n",
+       "4          2  125510.82              1          1               1   \n",
+       "...      ...        ...            ...        ...             ...   \n",
+       "9995       5       0.00              2          1               0   \n",
+       "9996      10   57369.61              1          1               1   \n",
+       "9997       7       0.00              1          0               1   \n",
+       "9998       3   75075.31              2          1               0   \n",
+       "9999       4  130142.79              1          1               0   \n",
+       "\n",
+       "      EstimatedSalary  Exited  \n",
+       "0           101348.88       1  \n",
+       "1           112542.58       0  \n",
+       "2           113931.57       1  \n",
+       "3            93826.63       0  \n",
+       "4            79084.10       0  \n",
+       "...               ...     ...  \n",
+       "9995         96270.64       0  \n",
+       "9996        101699.77       0  \n",
+       "9997         42085.58       1  \n",
+       "9998         92888.52       1  \n",
+       "9999         38190.78       0  \n",
+       "\n",
+       "[10000 rows x 14 columns]"
+      ]
+     },
+     "execution_count": 13,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df['Gender'].replace({'Female':1,'Male':0},inplace=True)\n",
+    "df"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 14,
+   "id": "85d6b922",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "df=pd.get_dummies(df,columns=['Geography'],dtype='int')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 15,
+   "id": "46df7662",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>RowNumber</th>\n",
+       "      <th>CustomerId</th>\n",
+       "      <th>Surname</th>\n",
+       "      <th>CreditScore</th>\n",
+       "      <th>Gender</th>\n",
+       "      <th>Age</th>\n",
+       "      <th>Tenure</th>\n",
+       "      <th>Balance</th>\n",
+       "      <th>NumOfProducts</th>\n",
+       "      <th>HasCrCard</th>\n",
+       "      <th>IsActiveMember</th>\n",
+       "      <th>EstimatedSalary</th>\n",
+       "      <th>Exited</th>\n",
+       "      <th>Geography_France</th>\n",
+       "      <th>Geography_Germany</th>\n",
+       "      <th>Geography_Spain</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>1</td>\n",
+       "      <td>15634602</td>\n",
+       "      <td>Hargrave</td>\n",
+       "      <td>619</td>\n",
+       "      <td>1</td>\n",
+       "      <td>42</td>\n",
+       "      <td>2</td>\n",
+       "      <td>0.00</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>101348.88</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>2</td>\n",
+       "      <td>15647311</td>\n",
+       "      <td>Hill</td>\n",
+       "      <td>608</td>\n",
+       "      <td>1</td>\n",
+       "      <td>41</td>\n",
+       "      <td>1</td>\n",
+       "      <td>83807.86</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>112542.58</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>3</td>\n",
+       "      <td>15619304</td>\n",
+       "      <td>Onio</td>\n",
+       "      <td>502</td>\n",
+       "      <td>1</td>\n",
+       "      <td>42</td>\n",
+       "      <td>8</td>\n",
+       "      <td>159660.80</td>\n",
+       "      <td>3</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>113931.57</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>4</td>\n",
+       "      <td>15701354</td>\n",
+       "      <td>Boni</td>\n",
+       "      <td>699</td>\n",
+       "      <td>1</td>\n",
+       "      <td>39</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.00</td>\n",
+       "      <td>2</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>93826.63</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>5</td>\n",
+       "      <td>15737888</td>\n",
+       "      <td>Mitchell</td>\n",
+       "      <td>850</td>\n",
+       "      <td>1</td>\n",
+       "      <td>43</td>\n",
+       "      <td>2</td>\n",
+       "      <td>125510.82</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>79084.10</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>...</th>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9995</th>\n",
+       "      <td>9996</td>\n",
+       "      <td>15606229</td>\n",
+       "      <td>Obijiaku</td>\n",
+       "      <td>771</td>\n",
+       "      <td>0</td>\n",
+       "      <td>39</td>\n",
+       "      <td>5</td>\n",
+       "      <td>0.00</td>\n",
+       "      <td>2</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>96270.64</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9996</th>\n",
+       "      <td>9997</td>\n",
+       "      <td>15569892</td>\n",
+       "      <td>Johnstone</td>\n",
+       "      <td>516</td>\n",
+       "      <td>0</td>\n",
+       "      <td>35</td>\n",
+       "      <td>10</td>\n",
+       "      <td>57369.61</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>101699.77</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9997</th>\n",
+       "      <td>9998</td>\n",
+       "      <td>15584532</td>\n",
+       "      <td>Liu</td>\n",
+       "      <td>709</td>\n",
+       "      <td>1</td>\n",
+       "      <td>36</td>\n",
+       "      <td>7</td>\n",
+       "      <td>0.00</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>42085.58</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9998</th>\n",
+       "      <td>9999</td>\n",
+       "      <td>15682355</td>\n",
+       "      <td>Sabbatini</td>\n",
+       "      <td>772</td>\n",
+       "      <td>0</td>\n",
+       "      <td>42</td>\n",
+       "      <td>3</td>\n",
+       "      <td>75075.31</td>\n",
+       "      <td>2</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>92888.52</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9999</th>\n",
+       "      <td>10000</td>\n",
+       "      <td>15628319</td>\n",
+       "      <td>Walker</td>\n",
+       "      <td>792</td>\n",
+       "      <td>1</td>\n",
+       "      <td>28</td>\n",
+       "      <td>4</td>\n",
+       "      <td>130142.79</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>38190.78</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "<p>10000 rows × 16 columns</p>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "      RowNumber  CustomerId    Surname  CreditScore  Gender  Age  Tenure  \\\n",
+       "0             1    15634602   Hargrave          619       1   42       2   \n",
+       "1             2    15647311       Hill          608       1   41       1   \n",
+       "2             3    15619304       Onio          502       1   42       8   \n",
+       "3             4    15701354       Boni          699       1   39       1   \n",
+       "4             5    15737888   Mitchell          850       1   43       2   \n",
+       "...         ...         ...        ...          ...     ...  ...     ...   \n",
+       "9995       9996    15606229   Obijiaku          771       0   39       5   \n",
+       "9996       9997    15569892  Johnstone          516       0   35      10   \n",
+       "9997       9998    15584532        Liu          709       1   36       7   \n",
+       "9998       9999    15682355  Sabbatini          772       0   42       3   \n",
+       "9999      10000    15628319     Walker          792       1   28       4   \n",
+       "\n",
+       "        Balance  NumOfProducts  HasCrCard  IsActiveMember  EstimatedSalary  \\\n",
+       "0          0.00              1          1               1        101348.88   \n",
+       "1      83807.86              1          0               1        112542.58   \n",
+       "2     159660.80              3          1               0        113931.57   \n",
+       "3          0.00              2          0               0         93826.63   \n",
+       "4     125510.82              1          1               1         79084.10   \n",
+       "...         ...            ...        ...             ...              ...   \n",
+       "9995       0.00              2          1               0         96270.64   \n",
+       "9996   57369.61              1          1               1        101699.77   \n",
+       "9997       0.00              1          0               1         42085.58   \n",
+       "9998   75075.31              2          1               0         92888.52   \n",
+       "9999  130142.79              1          1               0         38190.78   \n",
+       "\n",
+       "      Exited  Geography_France  Geography_Germany  Geography_Spain  \n",
+       "0          1                 1                  0                0  \n",
+       "1          0                 0                  0                1  \n",
+       "2          1                 1                  0                0  \n",
+       "3          0                 1                  0                0  \n",
+       "4          0                 0                  0                1  \n",
+       "...      ...               ...                ...              ...  \n",
+       "9995       0                 1                  0                0  \n",
+       "9996       0                 1                  0                0  \n",
+       "9997       1                 1                  0                0  \n",
+       "9998       1                 0                  1                0  \n",
+       "9999       0                 1                  0                0  \n",
+       "\n",
+       "[10000 rows x 16 columns]"
+      ]
+     },
+     "execution_count": 15,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 16,
+   "id": "e6e7f833",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>RowNumber</th>\n",
+       "      <th>CustomerId</th>\n",
+       "      <th>Surname</th>\n",
+       "      <th>CreditScore</th>\n",
+       "      <th>Gender</th>\n",
+       "      <th>Age</th>\n",
+       "      <th>Tenure</th>\n",
+       "      <th>Balance</th>\n",
+       "      <th>NumOfProducts</th>\n",
+       "      <th>HasCrCard</th>\n",
+       "      <th>IsActiveMember</th>\n",
+       "      <th>EstimatedSalary</th>\n",
+       "      <th>Exited</th>\n",
+       "      <th>Geography_France</th>\n",
+       "      <th>Geography_Germany</th>\n",
+       "      <th>Geography_Spain</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>1</td>\n",
+       "      <td>15634602</td>\n",
+       "      <td>Hargrave</td>\n",
+       "      <td>0.538</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.324324</td>\n",
+       "      <td>0.2</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.506735</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>2</td>\n",
+       "      <td>15647311</td>\n",
+       "      <td>Hill</td>\n",
+       "      <td>0.516</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.310811</td>\n",
+       "      <td>0.1</td>\n",
+       "      <td>0.334031</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.562709</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>3</td>\n",
+       "      <td>15619304</td>\n",
+       "      <td>Onio</td>\n",
+       "      <td>0.304</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.324324</td>\n",
+       "      <td>0.8</td>\n",
+       "      <td>0.636357</td>\n",
+       "      <td>3</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.569654</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>4</td>\n",
+       "      <td>15701354</td>\n",
+       "      <td>Boni</td>\n",
+       "      <td>0.698</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.283784</td>\n",
+       "      <td>0.1</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>2</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.469120</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>5</td>\n",
+       "      <td>15737888</td>\n",
+       "      <td>Mitchell</td>\n",
+       "      <td>1.000</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.337838</td>\n",
+       "      <td>0.2</td>\n",
+       "      <td>0.500246</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.395400</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>...</th>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9995</th>\n",
+       "      <td>9996</td>\n",
+       "      <td>15606229</td>\n",
+       "      <td>Obijiaku</td>\n",
+       "      <td>0.842</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.283784</td>\n",
+       "      <td>0.5</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>2</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.481341</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9996</th>\n",
+       "      <td>9997</td>\n",
+       "      <td>15569892</td>\n",
+       "      <td>Johnstone</td>\n",
+       "      <td>0.332</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.229730</td>\n",
+       "      <td>1.0</td>\n",
+       "      <td>0.228657</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.508490</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9997</th>\n",
+       "      <td>9998</td>\n",
+       "      <td>15584532</td>\n",
+       "      <td>Liu</td>\n",
+       "      <td>0.718</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.243243</td>\n",
+       "      <td>0.7</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.210390</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9998</th>\n",
+       "      <td>9999</td>\n",
+       "      <td>15682355</td>\n",
+       "      <td>Sabbatini</td>\n",
+       "      <td>0.844</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.324324</td>\n",
+       "      <td>0.3</td>\n",
+       "      <td>0.299226</td>\n",
+       "      <td>2</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.464429</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9999</th>\n",
+       "      <td>10000</td>\n",
+       "      <td>15628319</td>\n",
+       "      <td>Walker</td>\n",
+       "      <td>0.884</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.135135</td>\n",
+       "      <td>0.4</td>\n",
+       "      <td>0.518708</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.190914</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "<p>10000 rows × 16 columns</p>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "      RowNumber  CustomerId    Surname  CreditScore  Gender       Age  Tenure  \\\n",
+       "0             1    15634602   Hargrave        0.538       1  0.324324     0.2   \n",
+       "1             2    15647311       Hill        0.516       1  0.310811     0.1   \n",
+       "2             3    15619304       Onio        0.304       1  0.324324     0.8   \n",
+       "3             4    15701354       Boni        0.698       1  0.283784     0.1   \n",
+       "4             5    15737888   Mitchell        1.000       1  0.337838     0.2   \n",
+       "...         ...         ...        ...          ...     ...       ...     ...   \n",
+       "9995       9996    15606229   Obijiaku        0.842       0  0.283784     0.5   \n",
+       "9996       9997    15569892  Johnstone        0.332       0  0.229730     1.0   \n",
+       "9997       9998    15584532        Liu        0.718       1  0.243243     0.7   \n",
+       "9998       9999    15682355  Sabbatini        0.844       0  0.324324     0.3   \n",
+       "9999      10000    15628319     Walker        0.884       1  0.135135     0.4   \n",
+       "\n",
+       "       Balance  NumOfProducts  HasCrCard  IsActiveMember  EstimatedSalary  \\\n",
+       "0     0.000000              1          1               1         0.506735   \n",
+       "1     0.334031              1          0               1         0.562709   \n",
+       "2     0.636357              3          1               0         0.569654   \n",
+       "3     0.000000              2          0               0         0.469120   \n",
+       "4     0.500246              1          1               1         0.395400   \n",
+       "...        ...            ...        ...             ...              ...   \n",
+       "9995  0.000000              2          1               0         0.481341   \n",
+       "9996  0.228657              1          1               1         0.508490   \n",
+       "9997  0.000000              1          0               1         0.210390   \n",
+       "9998  0.299226              2          1               0         0.464429   \n",
+       "9999  0.518708              1          1               0         0.190914   \n",
+       "\n",
+       "      Exited  Geography_France  Geography_Germany  Geography_Spain  \n",
+       "0          1                 1                  0                0  \n",
+       "1          0                 0                  0                1  \n",
+       "2          1                 1                  0                0  \n",
+       "3          0                 1                  0                0  \n",
+       "4          0                 0                  0                1  \n",
+       "...      ...               ...                ...              ...  \n",
+       "9995       0                 1                  0                0  \n",
+       "9996       0                 1                  0                0  \n",
+       "9997       1                 1                  0                0  \n",
+       "9998       1                 0                  1                0  \n",
+       "9999       0                 1                  0                0  \n",
+       "\n",
+       "[10000 rows x 16 columns]"
+      ]
+     },
+     "execution_count": 16,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "from sklearn.preprocessing import MinMaxScaler\n",
+    "scaler=MinMaxScaler()\n",
+    "columns=['CreditScore','Age','Tenure','Balance','EstimatedSalary']\n",
+    "df[columns]=scaler.fit_transform(df[columns])\n",
+    "df"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 17,
+   "id": "220d6961",
+   "metadata": {
+    "scrolled": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "NumOfProducts\n",
+       "1    5084\n",
+       "2    4590\n",
+       "3     266\n",
+       "4      60\n",
+       "Name: count, dtype: int64"
+      ]
+     },
+     "execution_count": 17,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df['NumOfProducts'].value_counts()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 18,
+   "id": "1958d1c2",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "df['NumOfProducts'].replace({1:0,2:1,3:1,4:1},inplace=True)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 19,
+   "id": "d9e4cddd",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "NumOfProducts\n",
+       "0    5084\n",
+       "1    4916\n",
+       "Name: count, dtype: int64"
+      ]
+     },
+     "execution_count": 19,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df['NumOfProducts'].value_counts()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 20,
+   "id": "ac2b68d6",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "Exited\n",
+       "0    7963\n",
+       "1    2037\n",
+       "Name: count, dtype: int64"
+      ]
+     },
+     "execution_count": 20,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df.Exited.value_counts()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 21,
+   "id": "6a61a2d3",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>RowNumber</th>\n",
+       "      <th>CustomerId</th>\n",
+       "      <th>Surname</th>\n",
+       "      <th>CreditScore</th>\n",
+       "      <th>Gender</th>\n",
+       "      <th>Age</th>\n",
+       "      <th>Tenure</th>\n",
+       "      <th>Balance</th>\n",
+       "      <th>NumOfProducts</th>\n",
+       "      <th>HasCrCard</th>\n",
+       "      <th>IsActiveMember</th>\n",
+       "      <th>EstimatedSalary</th>\n",
+       "      <th>Exited</th>\n",
+       "      <th>Geography_France</th>\n",
+       "      <th>Geography_Germany</th>\n",
+       "      <th>Geography_Spain</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>1</td>\n",
+       "      <td>15634602</td>\n",
+       "      <td>Hargrave</td>\n",
+       "      <td>0.538</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.324324</td>\n",
+       "      <td>0.2</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.506735</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>3</td>\n",
+       "      <td>15619304</td>\n",
+       "      <td>Onio</td>\n",
+       "      <td>0.304</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.324324</td>\n",
+       "      <td>0.8</td>\n",
+       "      <td>0.636357</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.569654</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>5</th>\n",
+       "      <td>6</td>\n",
+       "      <td>15574012</td>\n",
+       "      <td>Chu</td>\n",
+       "      <td>0.590</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.351351</td>\n",
+       "      <td>0.8</td>\n",
+       "      <td>0.453394</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.748797</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>7</th>\n",
+       "      <td>8</td>\n",
+       "      <td>15656148</td>\n",
+       "      <td>Obinna</td>\n",
+       "      <td>0.052</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.148649</td>\n",
+       "      <td>0.4</td>\n",
+       "      <td>0.458540</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.596733</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>16</th>\n",
+       "      <td>17</td>\n",
+       "      <td>15737452</td>\n",
+       "      <td>Romeo</td>\n",
+       "      <td>0.606</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.540541</td>\n",
+       "      <td>0.1</td>\n",
+       "      <td>0.528513</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.025433</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>...</th>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>7924</th>\n",
+       "      <td>7925</td>\n",
+       "      <td>15613337</td>\n",
+       "      <td>Gallo</td>\n",
+       "      <td>0.966</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.391892</td>\n",
+       "      <td>0.2</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.911268</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4131</th>\n",
+       "      <td>4132</td>\n",
+       "      <td>15738634</td>\n",
+       "      <td>Yuan</td>\n",
+       "      <td>0.366</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.391892</td>\n",
+       "      <td>0.9</td>\n",
+       "      <td>0.332196</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.688489</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3928</th>\n",
+       "      <td>3929</td>\n",
+       "      <td>15609545</td>\n",
+       "      <td>Azubuike</td>\n",
+       "      <td>0.396</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.148649</td>\n",
+       "      <td>0.5</td>\n",
+       "      <td>0.332577</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.885114</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2887</th>\n",
+       "      <td>2888</td>\n",
+       "      <td>15604314</td>\n",
+       "      <td>Webb</td>\n",
+       "      <td>0.706</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.108108</td>\n",
+       "      <td>0.1</td>\n",
+       "      <td>0.387931</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.318560</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1374</th>\n",
+       "      <td>1375</td>\n",
+       "      <td>15774738</td>\n",
+       "      <td>Campa</td>\n",
+       "      <td>0.564</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.351351</td>\n",
+       "      <td>0.3</td>\n",
+       "      <td>0.429516</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.928369</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "<p>4074 rows × 16 columns</p>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "      RowNumber  CustomerId   Surname  CreditScore  Gender       Age  Tenure  \\\n",
+       "0             1    15634602  Hargrave        0.538       1  0.324324     0.2   \n",
+       "2             3    15619304      Onio        0.304       1  0.324324     0.8   \n",
+       "5             6    15574012       Chu        0.590       0  0.351351     0.8   \n",
+       "7             8    15656148    Obinna        0.052       1  0.148649     0.4   \n",
+       "16           17    15737452     Romeo        0.606       0  0.540541     0.1   \n",
+       "...         ...         ...       ...          ...     ...       ...     ...   \n",
+       "7924       7925    15613337     Gallo        0.966       0  0.391892     0.2   \n",
+       "4131       4132    15738634      Yuan        0.366       0  0.391892     0.9   \n",
+       "3928       3929    15609545  Azubuike        0.396       0  0.148649     0.5   \n",
+       "2887       2888    15604314      Webb        0.706       1  0.108108     0.1   \n",
+       "1374       1375    15774738     Campa        0.564       0  0.351351     0.3   \n",
+       "\n",
+       "       Balance  NumOfProducts  HasCrCard  IsActiveMember  EstimatedSalary  \\\n",
+       "0     0.000000              0          1               1         0.506735   \n",
+       "2     0.636357              1          1               0         0.569654   \n",
+       "5     0.453394              1          1               0         0.748797   \n",
+       "7     0.458540              1          1               0         0.596733   \n",
+       "16    0.528513              0          1               0         0.025433   \n",
+       "...        ...            ...        ...             ...              ...   \n",
+       "7924  0.000000              1          1               1         0.911268   \n",
+       "4131  0.332196              0          1               1         0.688489   \n",
+       "3928  0.332577              0          0               1         0.885114   \n",
+       "2887  0.387931              0          1               0         0.318560   \n",
+       "1374  0.429516              0          1               0         0.928369   \n",
+       "\n",
+       "      Exited  Geography_France  Geography_Germany  Geography_Spain  \n",
+       "0          1                 1                  0                0  \n",
+       "2          1                 1                  0                0  \n",
+       "5          1                 0                  0                1  \n",
+       "7          1                 0                  1                0  \n",
+       "16         1                 0                  1                0  \n",
+       "...      ...               ...                ...              ...  \n",
+       "7924       0                 1                  0                0  \n",
+       "4131       0                 1                  0                0  \n",
+       "3928       0                 1                  0                0  \n",
+       "2887       0                 0                  1                0  \n",
+       "1374       0                 1                  0                0  \n",
+       "\n",
+       "[4074 rows x 16 columns]"
+      ]
+     },
+     "execution_count": 21,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "# doing undersampling\n",
+    "df_churn_yes=df[df['Exited']==1]\n",
+    "df_churn_no=df[df['Exited']==0]\n",
+    "df_churn_no=df_churn_no.sample(n=2037)\n",
+    "df_new=pd.concat([df_churn_yes,df_churn_no],axis=0)\n",
+    "df_new"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 22,
+   "id": "54552652",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "Exited\n",
+       "1    2037\n",
+       "0    2037\n",
+       "Name: count, dtype: int64"
+      ]
+     },
+     "execution_count": 22,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df_new['Exited'].value_counts()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 23,
+   "id": "b99c725d",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>RowNumber</th>\n",
+       "      <th>CustomerId</th>\n",
+       "      <th>Surname</th>\n",
+       "      <th>CreditScore</th>\n",
+       "      <th>Gender</th>\n",
+       "      <th>Age</th>\n",
+       "      <th>Tenure</th>\n",
+       "      <th>Balance</th>\n",
+       "      <th>NumOfProducts</th>\n",
+       "      <th>HasCrCard</th>\n",
+       "      <th>IsActiveMember</th>\n",
+       "      <th>EstimatedSalary</th>\n",
+       "      <th>Exited</th>\n",
+       "      <th>Geography_France</th>\n",
+       "      <th>Geography_Germany</th>\n",
+       "      <th>Geography_Spain</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>1</td>\n",
+       "      <td>15634602</td>\n",
+       "      <td>Hargrave</td>\n",
+       "      <td>0.538</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.324324</td>\n",
+       "      <td>0.2</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.506735</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>3</td>\n",
+       "      <td>15619304</td>\n",
+       "      <td>Onio</td>\n",
+       "      <td>0.304</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.324324</td>\n",
+       "      <td>0.8</td>\n",
+       "      <td>0.636357</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.569654</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>5</th>\n",
+       "      <td>6</td>\n",
+       "      <td>15574012</td>\n",
+       "      <td>Chu</td>\n",
+       "      <td>0.590</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.351351</td>\n",
+       "      <td>0.8</td>\n",
+       "      <td>0.453394</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.748797</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>7</th>\n",
+       "      <td>8</td>\n",
+       "      <td>15656148</td>\n",
+       "      <td>Obinna</td>\n",
+       "      <td>0.052</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.148649</td>\n",
+       "      <td>0.4</td>\n",
+       "      <td>0.458540</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.596733</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>16</th>\n",
+       "      <td>17</td>\n",
+       "      <td>15737452</td>\n",
+       "      <td>Romeo</td>\n",
+       "      <td>0.606</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.540541</td>\n",
+       "      <td>0.1</td>\n",
+       "      <td>0.528513</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.025433</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>...</th>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>7924</th>\n",
+       "      <td>7925</td>\n",
+       "      <td>15613337</td>\n",
+       "      <td>Gallo</td>\n",
+       "      <td>0.966</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.391892</td>\n",
+       "      <td>0.2</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.911268</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4131</th>\n",
+       "      <td>4132</td>\n",
+       "      <td>15738634</td>\n",
+       "      <td>Yuan</td>\n",
+       "      <td>0.366</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.391892</td>\n",
+       "      <td>0.9</td>\n",
+       "      <td>0.332196</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.688489</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3928</th>\n",
+       "      <td>3929</td>\n",
+       "      <td>15609545</td>\n",
+       "      <td>Azubuike</td>\n",
+       "      <td>0.396</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.148649</td>\n",
+       "      <td>0.5</td>\n",
+       "      <td>0.332577</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.885114</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2887</th>\n",
+       "      <td>2888</td>\n",
+       "      <td>15604314</td>\n",
+       "      <td>Webb</td>\n",
+       "      <td>0.706</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.108108</td>\n",
+       "      <td>0.1</td>\n",
+       "      <td>0.387931</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.318560</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1374</th>\n",
+       "      <td>1375</td>\n",
+       "      <td>15774738</td>\n",
+       "      <td>Campa</td>\n",
+       "      <td>0.564</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.351351</td>\n",
+       "      <td>0.3</td>\n",
+       "      <td>0.429516</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.928369</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "<p>4074 rows × 16 columns</p>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "      RowNumber  CustomerId   Surname  CreditScore  Gender       Age  Tenure  \\\n",
+       "0             1    15634602  Hargrave        0.538       1  0.324324     0.2   \n",
+       "2             3    15619304      Onio        0.304       1  0.324324     0.8   \n",
+       "5             6    15574012       Chu        0.590       0  0.351351     0.8   \n",
+       "7             8    15656148    Obinna        0.052       1  0.148649     0.4   \n",
+       "16           17    15737452     Romeo        0.606       0  0.540541     0.1   \n",
+       "...         ...         ...       ...          ...     ...       ...     ...   \n",
+       "7924       7925    15613337     Gallo        0.966       0  0.391892     0.2   \n",
+       "4131       4132    15738634      Yuan        0.366       0  0.391892     0.9   \n",
+       "3928       3929    15609545  Azubuike        0.396       0  0.148649     0.5   \n",
+       "2887       2888    15604314      Webb        0.706       1  0.108108     0.1   \n",
+       "1374       1375    15774738     Campa        0.564       0  0.351351     0.3   \n",
+       "\n",
+       "       Balance  NumOfProducts  HasCrCard  IsActiveMember  EstimatedSalary  \\\n",
+       "0     0.000000              0          1               1         0.506735   \n",
+       "2     0.636357              1          1               0         0.569654   \n",
+       "5     0.453394              1          1               0         0.748797   \n",
+       "7     0.458540              1          1               0         0.596733   \n",
+       "16    0.528513              0          1               0         0.025433   \n",
+       "...        ...            ...        ...             ...              ...   \n",
+       "7924  0.000000              1          1               1         0.911268   \n",
+       "4131  0.332196              0          1               1         0.688489   \n",
+       "3928  0.332577              0          0               1         0.885114   \n",
+       "2887  0.387931              0          1               0         0.318560   \n",
+       "1374  0.429516              0          1               0         0.928369   \n",
+       "\n",
+       "      Exited  Geography_France  Geography_Germany  Geography_Spain  \n",
+       "0          1                 1                  0                0  \n",
+       "2          1                 1                  0                0  \n",
+       "5          1                 0                  0                1  \n",
+       "7          1                 0                  1                0  \n",
+       "16         1                 0                  1                0  \n",
+       "...      ...               ...                ...              ...  \n",
+       "7924       0                 1                  0                0  \n",
+       "4131       0                 1                  0                0  \n",
+       "3928       0                 1                  0                0  \n",
+       "2887       0                 0                  1                0  \n",
+       "1374       0                 1                  0                0  \n",
+       "\n",
+       "[4074 rows x 16 columns]"
+      ]
+     },
+     "execution_count": 23,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df_new"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 24,
+   "id": "263a2972",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "X=df_new.drop(columns=['RowNumber','CustomerId','Surname','Exited'])\n",
+    "Y=df_new['Exited']\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 25,
+   "id": "e3154f9f",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>CreditScore</th>\n",
+       "      <th>Gender</th>\n",
+       "      <th>Age</th>\n",
+       "      <th>Tenure</th>\n",
+       "      <th>Balance</th>\n",
+       "      <th>NumOfProducts</th>\n",
+       "      <th>HasCrCard</th>\n",
+       "      <th>IsActiveMember</th>\n",
+       "      <th>EstimatedSalary</th>\n",
+       "      <th>Geography_France</th>\n",
+       "      <th>Geography_Germany</th>\n",
+       "      <th>Geography_Spain</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>0.538</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.324324</td>\n",
+       "      <td>0.2</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.506735</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>0.304</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.324324</td>\n",
+       "      <td>0.8</td>\n",
+       "      <td>0.636357</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.569654</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>5</th>\n",
+       "      <td>0.590</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.351351</td>\n",
+       "      <td>0.8</td>\n",
+       "      <td>0.453394</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.748797</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>7</th>\n",
+       "      <td>0.052</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.148649</td>\n",
+       "      <td>0.4</td>\n",
+       "      <td>0.458540</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.596733</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>16</th>\n",
+       "      <td>0.606</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.540541</td>\n",
+       "      <td>0.1</td>\n",
+       "      <td>0.528513</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.025433</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>...</th>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>7924</th>\n",
+       "      <td>0.966</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.391892</td>\n",
+       "      <td>0.2</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.911268</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4131</th>\n",
+       "      <td>0.366</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.391892</td>\n",
+       "      <td>0.9</td>\n",
+       "      <td>0.332196</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.688489</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3928</th>\n",
+       "      <td>0.396</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.148649</td>\n",
+       "      <td>0.5</td>\n",
+       "      <td>0.332577</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.885114</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2887</th>\n",
+       "      <td>0.706</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.108108</td>\n",
+       "      <td>0.1</td>\n",
+       "      <td>0.387931</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.318560</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1374</th>\n",
+       "      <td>0.564</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.351351</td>\n",
+       "      <td>0.3</td>\n",
+       "      <td>0.429516</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.928369</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "<p>4074 rows × 12 columns</p>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "      CreditScore  Gender       Age  Tenure   Balance  NumOfProducts  \\\n",
+       "0           0.538       1  0.324324     0.2  0.000000              0   \n",
+       "2           0.304       1  0.324324     0.8  0.636357              1   \n",
+       "5           0.590       0  0.351351     0.8  0.453394              1   \n",
+       "7           0.052       1  0.148649     0.4  0.458540              1   \n",
+       "16          0.606       0  0.540541     0.1  0.528513              0   \n",
+       "...           ...     ...       ...     ...       ...            ...   \n",
+       "7924        0.966       0  0.391892     0.2  0.000000              1   \n",
+       "4131        0.366       0  0.391892     0.9  0.332196              0   \n",
+       "3928        0.396       0  0.148649     0.5  0.332577              0   \n",
+       "2887        0.706       1  0.108108     0.1  0.387931              0   \n",
+       "1374        0.564       0  0.351351     0.3  0.429516              0   \n",
+       "\n",
+       "      HasCrCard  IsActiveMember  EstimatedSalary  Geography_France  \\\n",
+       "0             1               1         0.506735                 1   \n",
+       "2             1               0         0.569654                 1   \n",
+       "5             1               0         0.748797                 0   \n",
+       "7             1               0         0.596733                 0   \n",
+       "16            1               0         0.025433                 0   \n",
+       "...         ...             ...              ...               ...   \n",
+       "7924          1               1         0.911268                 1   \n",
+       "4131          1               1         0.688489                 1   \n",
+       "3928          0               1         0.885114                 1   \n",
+       "2887          1               0         0.318560                 0   \n",
+       "1374          1               0         0.928369                 1   \n",
+       "\n",
+       "      Geography_Germany  Geography_Spain  \n",
+       "0                     0                0  \n",
+       "2                     0                0  \n",
+       "5                     0                1  \n",
+       "7                     1                0  \n",
+       "16                    1                0  \n",
+       "...                 ...              ...  \n",
+       "7924                  0                0  \n",
+       "4131                  0                0  \n",
+       "3928                  0                0  \n",
+       "2887                  1                0  \n",
+       "1374                  0                0  \n",
+       "\n",
+       "[4074 rows x 12 columns]"
+      ]
+     },
+     "execution_count": 25,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "X"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 26,
+   "id": "94e1b448",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "0       1\n",
+       "2       1\n",
+       "5       1\n",
+       "7       1\n",
+       "16      1\n",
+       "       ..\n",
+       "7924    0\n",
+       "4131    0\n",
+       "3928    0\n",
+       "2887    0\n",
+       "1374    0\n",
+       "Name: Exited, Length: 4074, dtype: int64"
+      ]
+     },
+     "execution_count": 26,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "Y"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 27,
+   "id": "662bfe16",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from sklearn.model_selection import train_test_split\n",
+    "X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.2)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 28,
+   "id": "b33573e1",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "(3259, 12) (815, 12)\n"
+     ]
+    }
+   ],
+   "source": [
+    "print(X_train.shape,X_test.shape)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 29,
+   "id": "509a8f4a",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Epoch 1/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.5816 - loss: 0.6746\n",
+      "Epoch 2/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.6460 - loss: 0.6389\n",
+      "Epoch 3/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.6494 - loss: 0.6270\n",
+      "Epoch 4/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.6631 - loss: 0.6136\n",
+      "Epoch 5/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.6731 - loss: 0.6059\n",
+      "Epoch 6/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 976us/step - accuracy: 0.6835 - loss: 0.5909\n",
+      "Epoch 7/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7024 - loss: 0.5845\n",
+      "Epoch 8/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.6803 - loss: 0.5999\n",
+      "Epoch 9/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.6747 - loss: 0.5960\n",
+      "Epoch 10/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 937us/step - accuracy: 0.6889 - loss: 0.5892\n",
+      "Epoch 11/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 989us/step - accuracy: 0.6938 - loss: 0.5814\n",
+      "Epoch 12/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 923us/step - accuracy: 0.7175 - loss: 0.5579\n",
+      "Epoch 13/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7110 - loss: 0.5653\n",
+      "Epoch 14/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.6946 - loss: 0.5816\n",
+      "Epoch 15/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7096 - loss: 0.5661\n",
+      "Epoch 16/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7135 - loss: 0.5589\n",
+      "Epoch 17/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7218 - loss: 0.5539\n",
+      "Epoch 18/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7057 - loss: 0.5648\n",
+      "Epoch 19/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7079 - loss: 0.5622\n",
+      "Epoch 20/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7056 - loss: 0.5734\n",
+      "Epoch 21/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7176 - loss: 0.5626\n",
+      "Epoch 22/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7121 - loss: 0.5594\n",
+      "Epoch 23/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7241 - loss: 0.5481\n",
+      "Epoch 24/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7341 - loss: 0.5459\n",
+      "Epoch 25/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 988us/step - accuracy: 0.7122 - loss: 0.5635\n",
+      "Epoch 26/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7191 - loss: 0.5466\n",
+      "Epoch 27/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7255 - loss: 0.5451\n",
+      "Epoch 28/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7144 - loss: 0.5520\n",
+      "Epoch 29/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7233 - loss: 0.5473\n",
+      "Epoch 30/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7223 - loss: 0.5466\n",
+      "Epoch 31/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7163 - loss: 0.5457\n",
+      "Epoch 32/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7115 - loss: 0.5514\n",
+      "Epoch 33/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7034 - loss: 0.5622\n",
+      "Epoch 34/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7091 - loss: 0.5620\n",
+      "Epoch 35/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7088 - loss: 0.5566\n",
+      "Epoch 36/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7192 - loss: 0.5565\n",
+      "Epoch 37/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7084 - loss: 0.5515\n",
+      "Epoch 38/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7185 - loss: 0.5470\n",
+      "Epoch 39/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7242 - loss: 0.5457\n",
+      "Epoch 40/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7145 - loss: 0.5495\n",
+      "Epoch 41/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7201 - loss: 0.5603\n",
+      "Epoch 42/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7181 - loss: 0.5458\n",
+      "Epoch 43/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7296 - loss: 0.5366\n",
+      "Epoch 44/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7079 - loss: 0.5603\n",
+      "Epoch 45/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7241 - loss: 0.5589\n",
+      "Epoch 46/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7282 - loss: 0.5474\n",
+      "Epoch 47/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7233 - loss: 0.5511\n",
+      "Epoch 48/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7239 - loss: 0.5465\n",
+      "Epoch 49/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7249 - loss: 0.5414\n",
+      "Epoch 50/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7270 - loss: 0.5497\n",
+      "Epoch 51/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7326 - loss: 0.5444\n",
+      "Epoch 52/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7255 - loss: 0.5472\n",
+      "Epoch 53/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7299 - loss: 0.5382\n",
+      "Epoch 54/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7189 - loss: 0.5462\n",
+      "Epoch 55/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7293 - loss: 0.5386\n",
+      "Epoch 56/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7317 - loss: 0.5372\n",
+      "Epoch 57/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7277 - loss: 0.5431\n",
+      "Epoch 58/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7187 - loss: 0.5560\n",
+      "Epoch 59/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7274 - loss: 0.5504\n",
+      "Epoch 60/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7233 - loss: 0.5402\n",
+      "Epoch 61/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 989us/step - accuracy: 0.7209 - loss: 0.5435\n",
+      "Epoch 62/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7278 - loss: 0.5412\n",
+      "Epoch 63/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7272 - loss: 0.5451\n",
+      "Epoch 64/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7241 - loss: 0.5462\n",
+      "Epoch 65/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7184 - loss: 0.5478\n",
+      "Epoch 66/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7391 - loss: 0.5403\n",
+      "Epoch 67/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7307 - loss: 0.5336\n",
+      "Epoch 68/100\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7329 - loss: 0.5396\n",
+      "Epoch 69/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7165 - loss: 0.5532\n",
+      "Epoch 70/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7178 - loss: 0.5536\n",
+      "Epoch 71/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7119 - loss: 0.5469\n",
+      "Epoch 72/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7389 - loss: 0.5380\n",
+      "Epoch 73/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7201 - loss: 0.5485\n",
+      "Epoch 74/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7230 - loss: 0.5474\n",
+      "Epoch 75/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7312 - loss: 0.5322\n",
+      "Epoch 76/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7365 - loss: 0.5405\n",
+      "Epoch 77/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7287 - loss: 0.5437\n",
+      "Epoch 78/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7346 - loss: 0.5366\n",
+      "Epoch 79/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7201 - loss: 0.5403\n",
+      "Epoch 80/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7279 - loss: 0.5375\n",
+      "Epoch 81/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7360 - loss: 0.5349\n",
+      "Epoch 82/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 980us/step - accuracy: 0.7132 - loss: 0.5401\n",
+      "Epoch 83/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7107 - loss: 0.5596\n",
+      "Epoch 84/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7387 - loss: 0.5294\n",
+      "Epoch 85/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7240 - loss: 0.5436\n",
+      "Epoch 86/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7379 - loss: 0.5309\n",
+      "Epoch 87/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7339 - loss: 0.5396\n",
+      "Epoch 88/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 926us/step - accuracy: 0.7224 - loss: 0.5324\n",
+      "Epoch 89/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7212 - loss: 0.5445\n",
+      "Epoch 90/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7298 - loss: 0.5426\n",
+      "Epoch 91/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7304 - loss: 0.5294\n",
+      "Epoch 92/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7306 - loss: 0.5325\n",
+      "Epoch 93/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7312 - loss: 0.5343\n",
+      "Epoch 94/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7259 - loss: 0.5371\n",
+      "Epoch 95/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7393 - loss: 0.5265\n",
+      "Epoch 96/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7318 - loss: 0.5444\n",
+      "Epoch 97/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7257 - loss: 0.5303\n",
+      "Epoch 98/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7170 - loss: 0.5440\n",
+      "Epoch 99/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7206 - loss: 0.5397\n",
+      "Epoch 100/100\n",
+      "\u001b[1m102/102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7235 - loss: 0.5390\n"
+     ]
+    },
+    {
+     "data": {
+      "text/plain": [
+       "<keras.src.callbacks.history.History at 0x1e4d92f2390>"
+      ]
+     },
+     "execution_count": 29,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "model=keras.Sequential([\n",
+    "    keras.layers.Dense(10,input_shape=(12,),activation='relu'),\n",
+    "    keras.layers.Dense(1,activation='sigmoid'),\n",
+    "])\n",
+    "\n",
+    "model.compile(\n",
+    "    optimizer='adam',\n",
+    "    loss='binary_crossentropy',\n",
+    "    metrics=['accuracy']\n",
+    ")\n",
+    "model.fit(X_train,Y_train,epochs=100)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 30,
+   "id": "7e5ab5de",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "\u001b[1m26/26\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.7210 - loss: 0.5595  \n"
+     ]
+    },
+    {
+     "data": {
+      "text/plain": [
+       "[0.5702299475669861, 0.7116564512252808]"
+      ]
+     },
+     "execution_count": 30,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "model.evaluate(X_test,Y_test)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 31,
+   "id": "1313ba8c",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "868     1\n",
+       "3467    0\n",
+       "7701    1\n",
+       "8018    1\n",
+       "6051    0\n",
+       "Name: Exited, dtype: int64"
+      ]
+     },
+     "execution_count": 31,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "Y_test[0:5]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 32,
+   "id": "1f5653af",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step\n"
+     ]
+    },
+    {
+     "data": {
+      "text/plain": [
+       "0"
+      ]
+     },
+     "execution_count": 32,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "np.argmax(model.predict(X_test[0:1]))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 33,
+   "id": "2017d99c",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "\u001b[1m26/26\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step \n"
+     ]
+    },
+    {
+     "data": {
+      "text/plain": [
+       "[1, 0, 0, 0, 1]"
+      ]
+     },
+     "execution_count": 33,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "yp=model.predict(X_test)\n",
+    "y_pred=[]\n",
+    "for i in yp:\n",
+    "    if (i>0.5):\n",
+    "        y_pred.append(1)\n",
+    "    else:\n",
+    "        y_pred.append(0)\n",
+    "y_pred[:5]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 34,
+   "id": "65c95f6c",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "              precision    recall  f1-score   support\n",
+      "\n",
+      "           0       0.76      0.68      0.72       441\n",
+      "           1       0.67      0.75      0.70       374\n",
+      "\n",
+      "    accuracy                           0.71       815\n",
+      "   macro avg       0.71      0.71      0.71       815\n",
+      "weighted avg       0.72      0.71      0.71       815\n",
+      "\n"
+     ]
+    }
+   ],
+   "source": [
+    "from sklearn.metrics import classification_report\n",
+    "print(classification_report(Y_test,y_pred))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 35,
+   "id": "0bc3e935",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "array([[301, 140],\n",
+       "       [ 95, 279]], dtype=int64)"
+      ]
+     },
+     "execution_count": 35,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "from sklearn.metrics import confusion_matrix\n",
+    "cm=confusion_matrix(Y_test,y_pred)\n",
+    "cm"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 44,
+   "id": "0fc61917",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def ANN(X_train,Y_train,X_test,Y_test,loss,weights):\n",
+    "    \n",
+    "    model=keras.Sequential([\n",
+    "    keras.layers.Dense(12,input_shape=(12,),activation='relu'),\n",
+    "    keras.layers.Dense(10,activation='relu'),\n",
+    "    keras.layers.Dense(1,activation='sigmoid'),\n",
+    "    ])\n",
+    "\n",
+    "    model.compile(\n",
+    "        optimizer='adam',\n",
+    "        loss=loss,\n",
+    "        metrics=['accuracy']\n",
+    "    )\n",
+    "    \n",
+    "    if weights==-1:\n",
+    "        model.fit(X_train,Y_train,epochs=100)\n",
+    "    else:\n",
+    "        model.fit(X_train,Y_train,epochs=100,class_weight=weights)\n",
+    "    \n",
+    "    y_preds=model.predict(X_test)\n",
+    "    y_preds=np.round(y_preds)\n",
+    "    print(\"Classification Report : \\n\",classification_report(Y_test,y_preds))\n",
+    "    \n",
+    "    return y_preds"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "abe2f946",
+   "metadata": {},
+   "source": [
+    "## Improving the F1 Score using Sampling Techniques"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 45,
+   "id": "22e25f34",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>RowNumber</th>\n",
+       "      <th>CustomerId</th>\n",
+       "      <th>Surname</th>\n",
+       "      <th>CreditScore</th>\n",
+       "      <th>Gender</th>\n",
+       "      <th>Age</th>\n",
+       "      <th>Tenure</th>\n",
+       "      <th>Balance</th>\n",
+       "      <th>NumOfProducts</th>\n",
+       "      <th>HasCrCard</th>\n",
+       "      <th>IsActiveMember</th>\n",
+       "      <th>EstimatedSalary</th>\n",
+       "      <th>Exited</th>\n",
+       "      <th>Geography_France</th>\n",
+       "      <th>Geography_Germany</th>\n",
+       "      <th>Geography_Spain</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>1</td>\n",
+       "      <td>15634602</td>\n",
+       "      <td>Hargrave</td>\n",
+       "      <td>0.538</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.324324</td>\n",
+       "      <td>0.2</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.506735</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>2</td>\n",
+       "      <td>15647311</td>\n",
+       "      <td>Hill</td>\n",
+       "      <td>0.516</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.310811</td>\n",
+       "      <td>0.1</td>\n",
+       "      <td>0.334031</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.562709</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>3</td>\n",
+       "      <td>15619304</td>\n",
+       "      <td>Onio</td>\n",
+       "      <td>0.304</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.324324</td>\n",
+       "      <td>0.8</td>\n",
+       "      <td>0.636357</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.569654</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>4</td>\n",
+       "      <td>15701354</td>\n",
+       "      <td>Boni</td>\n",
+       "      <td>0.698</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.283784</td>\n",
+       "      <td>0.1</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.469120</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>5</td>\n",
+       "      <td>15737888</td>\n",
+       "      <td>Mitchell</td>\n",
+       "      <td>1.000</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.337838</td>\n",
+       "      <td>0.2</td>\n",
+       "      <td>0.500246</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.395400</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>...</th>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9995</th>\n",
+       "      <td>9996</td>\n",
+       "      <td>15606229</td>\n",
+       "      <td>Obijiaku</td>\n",
+       "      <td>0.842</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.283784</td>\n",
+       "      <td>0.5</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.481341</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9996</th>\n",
+       "      <td>9997</td>\n",
+       "      <td>15569892</td>\n",
+       "      <td>Johnstone</td>\n",
+       "      <td>0.332</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.229730</td>\n",
+       "      <td>1.0</td>\n",
+       "      <td>0.228657</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.508490</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9997</th>\n",
+       "      <td>9998</td>\n",
+       "      <td>15584532</td>\n",
+       "      <td>Liu</td>\n",
+       "      <td>0.718</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.243243</td>\n",
+       "      <td>0.7</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.210390</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9998</th>\n",
+       "      <td>9999</td>\n",
+       "      <td>15682355</td>\n",
+       "      <td>Sabbatini</td>\n",
+       "      <td>0.844</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.324324</td>\n",
+       "      <td>0.3</td>\n",
+       "      <td>0.299226</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.464429</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9999</th>\n",
+       "      <td>10000</td>\n",
+       "      <td>15628319</td>\n",
+       "      <td>Walker</td>\n",
+       "      <td>0.884</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.135135</td>\n",
+       "      <td>0.4</td>\n",
+       "      <td>0.518708</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.190914</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "<p>10000 rows × 16 columns</p>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "      RowNumber  CustomerId    Surname  CreditScore  Gender       Age  Tenure  \\\n",
+       "0             1    15634602   Hargrave        0.538       1  0.324324     0.2   \n",
+       "1             2    15647311       Hill        0.516       1  0.310811     0.1   \n",
+       "2             3    15619304       Onio        0.304       1  0.324324     0.8   \n",
+       "3             4    15701354       Boni        0.698       1  0.283784     0.1   \n",
+       "4             5    15737888   Mitchell        1.000       1  0.337838     0.2   \n",
+       "...         ...         ...        ...          ...     ...       ...     ...   \n",
+       "9995       9996    15606229   Obijiaku        0.842       0  0.283784     0.5   \n",
+       "9996       9997    15569892  Johnstone        0.332       0  0.229730     1.0   \n",
+       "9997       9998    15584532        Liu        0.718       1  0.243243     0.7   \n",
+       "9998       9999    15682355  Sabbatini        0.844       0  0.324324     0.3   \n",
+       "9999      10000    15628319     Walker        0.884       1  0.135135     0.4   \n",
+       "\n",
+       "       Balance  NumOfProducts  HasCrCard  IsActiveMember  EstimatedSalary  \\\n",
+       "0     0.000000              0          1               1         0.506735   \n",
+       "1     0.334031              0          0               1         0.562709   \n",
+       "2     0.636357              1          1               0         0.569654   \n",
+       "3     0.000000              1          0               0         0.469120   \n",
+       "4     0.500246              0          1               1         0.395400   \n",
+       "...        ...            ...        ...             ...              ...   \n",
+       "9995  0.000000              1          1               0         0.481341   \n",
+       "9996  0.228657              0          1               1         0.508490   \n",
+       "9997  0.000000              0          0               1         0.210390   \n",
+       "9998  0.299226              1          1               0         0.464429   \n",
+       "9999  0.518708              0          1               0         0.190914   \n",
+       "\n",
+       "      Exited  Geography_France  Geography_Germany  Geography_Spain  \n",
+       "0          1                 1                  0                0  \n",
+       "1          0                 0                  0                1  \n",
+       "2          1                 1                  0                0  \n",
+       "3          0                 1                  0                0  \n",
+       "4          0                 0                  0                1  \n",
+       "...      ...               ...                ...              ...  \n",
+       "9995       0                 1                  0                0  \n",
+       "9996       0                 1                  0                0  \n",
+       "9997       1                 1                  0                0  \n",
+       "9998       1                 0                  1                0  \n",
+       "9999       0                 1                  0                0  \n",
+       "\n",
+       "[10000 rows x 16 columns]"
+      ]
+     },
+     "execution_count": 45,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 46,
+   "id": "ab3c285c",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "Exited\n",
+       "0    7963\n",
+       "1    2037\n",
+       "Name: count, dtype: int64"
+      ]
+     },
+     "execution_count": 46,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df['Exited'].value_counts()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "bd44dcf7",
+   "metadata": {},
+   "source": [
+    "###  1st using Under sampling"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 47,
+   "id": "1897185c",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "df_exited_0=df[df['Exited']==0]\n",
+    "df_exited_1=df[df['Exited']==1]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 48,
+   "id": "0c76a83e",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "df_exited_0_under=df_exited_0.sample(n=2037)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 49,
+   "id": "47215e21",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "Exited\n",
+       "0    2037\n",
+       "1    2037\n",
+       "Name: count, dtype: int64"
+      ]
+     },
+     "execution_count": 49,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df_new_under=pd.concat([df_exited_0_under,df_exited_1],axis=0)\n",
+    "df_new_under['Exited'].value_counts()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 50,
+   "id": "ffba98b0",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "X=df_new_under.drop(columns=['RowNumber','CustomerId','Surname','Exited'])\n",
+    "Y=df_new_under['Exited']"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 51,
+   "id": "2c5677a0",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from sklearn.model_selection import train_test_split\n",
+    "X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.2)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 58,
+   "id": "a6f10879",
+   "metadata": {
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Epoch 1/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.6105 - loss: 0.6609\n",
+      "Epoch 2/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.6906 - loss: 0.5978\n",
+      "Epoch 3/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7071 - loss: 0.5670\n",
+      "Epoch 4/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7166 - loss: 0.5587\n",
+      "Epoch 5/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7151 - loss: 0.5602\n",
+      "Epoch 6/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7307 - loss: 0.5425\n",
+      "Epoch 7/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7209 - loss: 0.5484\n",
+      "Epoch 8/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7235 - loss: 0.5453\n",
+      "Epoch 9/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 990us/step - accuracy: 0.7230 - loss: 0.5417\n",
+      "Epoch 10/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7245 - loss: 0.5391\n",
+      "Epoch 11/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7215 - loss: 0.5383\n",
+      "Epoch 12/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7306 - loss: 0.5291\n",
+      "Epoch 13/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7315 - loss: 0.5333\n",
+      "Epoch 14/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7341 - loss: 0.5263\n",
+      "Epoch 15/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7371 - loss: 0.5282\n",
+      "Epoch 16/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7384 - loss: 0.5265\n",
+      "Epoch 17/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 959us/step - accuracy: 0.7430 - loss: 0.5123\n",
+      "Epoch 18/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7423 - loss: 0.5210\n",
+      "Epoch 19/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7393 - loss: 0.5249\n",
+      "Epoch 20/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 962us/step - accuracy: 0.7523 - loss: 0.5124\n",
+      "Epoch 21/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 986us/step - accuracy: 0.7443 - loss: 0.5174\n",
+      "Epoch 22/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 993us/step - accuracy: 0.7418 - loss: 0.5219\n",
+      "Epoch 23/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7433 - loss: 0.5145\n",
+      "Epoch 24/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7545 - loss: 0.5075\n",
+      "Epoch 25/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7421 - loss: 0.5180\n",
+      "Epoch 26/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7439 - loss: 0.5127\n",
+      "Epoch 27/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7508 - loss: 0.5097\n",
+      "Epoch 28/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7490 - loss: 0.5090\n",
+      "Epoch 29/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7531 - loss: 0.5019\n",
+      "Epoch 30/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7536 - loss: 0.5066\n",
+      "Epoch 31/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7521 - loss: 0.5020\n",
+      "Epoch 32/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7534 - loss: 0.5059\n",
+      "Epoch 33/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7508 - loss: 0.5034\n",
+      "Epoch 34/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7512 - loss: 0.5012\n",
+      "Epoch 35/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7479 - loss: 0.5124\n",
+      "Epoch 36/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7521 - loss: 0.4978\n",
+      "Epoch 37/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7543 - loss: 0.5042\n",
+      "Epoch 38/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 971us/step - accuracy: 0.7507 - loss: 0.5016\n",
+      "Epoch 39/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7526 - loss: 0.5024\n",
+      "Epoch 40/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7523 - loss: 0.5022\n",
+      "Epoch 41/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7565 - loss: 0.4971\n",
+      "Epoch 42/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7543 - loss: 0.5066\n",
+      "Epoch 43/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7491 - loss: 0.5020\n",
+      "Epoch 44/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7547 - loss: 0.4960\n",
+      "Epoch 45/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7523 - loss: 0.5024\n",
+      "Epoch 46/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7577 - loss: 0.4949\n",
+      "Epoch 47/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7519 - loss: 0.5037\n",
+      "Epoch 48/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7533 - loss: 0.4994\n",
+      "Epoch 49/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7487 - loss: 0.5049\n",
+      "Epoch 50/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7539 - loss: 0.4974\n",
+      "Epoch 51/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7522 - loss: 0.5002\n",
+      "Epoch 52/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7541 - loss: 0.4983\n",
+      "Epoch 53/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7588 - loss: 0.4932\n",
+      "Epoch 54/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7549 - loss: 0.4944\n",
+      "Epoch 55/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7563 - loss: 0.4963\n",
+      "Epoch 56/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7464 - loss: 0.5006\n",
+      "Epoch 57/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7578 - loss: 0.4940\n",
+      "Epoch 58/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7609 - loss: 0.4910\n",
+      "Epoch 59/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7497 - loss: 0.4981\n",
+      "Epoch 60/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7505 - loss: 0.5026\n",
+      "Epoch 61/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7604 - loss: 0.4874\n",
+      "Epoch 62/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7558 - loss: 0.4971\n",
+      "Epoch 63/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 989us/step - accuracy: 0.7548 - loss: 0.4943\n",
+      "Epoch 64/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7586 - loss: 0.4922\n",
+      "Epoch 65/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7616 - loss: 0.4854\n",
+      "Epoch 66/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7621 - loss: 0.4872\n",
+      "Epoch 67/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7557 - loss: 0.4960\n",
+      "Epoch 68/100\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7562 - loss: 0.4941\n",
+      "Epoch 69/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7561 - loss: 0.4937\n",
+      "Epoch 70/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7498 - loss: 0.5007\n",
+      "Epoch 71/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7638 - loss: 0.4855\n",
+      "Epoch 72/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7525 - loss: 0.4912\n",
+      "Epoch 73/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7585 - loss: 0.4922\n",
+      "Epoch 74/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7542 - loss: 0.4958\n",
+      "Epoch 75/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7572 - loss: 0.4926\n",
+      "Epoch 76/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7538 - loss: 0.4971\n",
+      "Epoch 77/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7603 - loss: 0.4869\n",
+      "Epoch 78/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7508 - loss: 0.4976\n",
+      "Epoch 79/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7567 - loss: 0.4892\n",
+      "Epoch 80/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 967us/step - accuracy: 0.7598 - loss: 0.4865\n",
+      "Epoch 81/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7569 - loss: 0.4939\n",
+      "Epoch 82/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7622 - loss: 0.4878\n",
+      "Epoch 83/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7603 - loss: 0.4916\n",
+      "Epoch 84/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7585 - loss: 0.4861\n",
+      "Epoch 85/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7603 - loss: 0.4840\n",
+      "Epoch 86/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7624 - loss: 0.4849\n",
+      "Epoch 87/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7600 - loss: 0.4860\n",
+      "Epoch 88/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7618 - loss: 0.4858\n",
+      "Epoch 89/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7591 - loss: 0.4842\n",
+      "Epoch 90/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7625 - loss: 0.4866\n",
+      "Epoch 91/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7579 - loss: 0.4904\n",
+      "Epoch 92/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7581 - loss: 0.4908\n",
+      "Epoch 93/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7651 - loss: 0.4862\n",
+      "Epoch 94/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7646 - loss: 0.4787\n",
+      "Epoch 95/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7551 - loss: 0.4924\n",
+      "Epoch 96/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7613 - loss: 0.4864\n",
+      "Epoch 97/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7583 - loss: 0.4915\n",
+      "Epoch 98/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7573 - loss: 0.4908\n",
+      "Epoch 99/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7631 - loss: 0.4871\n",
+      "Epoch 100/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 997us/step - accuracy: 0.7612 - loss: 0.4906\n",
+      "\u001b[1m100/100\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step\n",
+      "              precision    recall  f1-score   support\n",
+      "\n",
+      "           0       0.76      0.74      0.75      1588\n",
+      "           1       0.75      0.77      0.76      1598\n",
+      "\n",
+      "    accuracy                           0.75      3186\n",
+      "   macro avg       0.75      0.75      0.75      3186\n",
+      "weighted avg       0.75      0.75      0.75      3186\n",
+      "\n",
+      "Classification Report : \n",
+      " None\n"
+     ]
+    }
+   ],
+   "source": [
+    "y_pred=ANN(X_train,Y_train,X_test,Y_test,'binary_crossentropy',-1)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "ec8e7387",
+   "metadata": {},
+   "source": [
+    "### 2nd using Over Sampling"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 59,
+   "id": "33cad1d3",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "Exited\n",
+       "0    7963\n",
+       "1    7963\n",
+       "Name: count, dtype: int64"
+      ]
+     },
+     "execution_count": 59,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df_exited_1_over=df_exited_1.sample(7963,replace=True)\n",
+    "df_new_over=pd.concat([df_exited_0,df_exited_1_over],axis=0)\n",
+    "df_new_over['Exited'].value_counts()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 60,
+   "id": "96c6531b",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "X=df_new_over.drop(columns=['RowNumber','CustomerId','Surname','Exited'])\n",
+    "Y=df_new_over['Exited']"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 61,
+   "id": "133fcf76",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.2)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 62,
+   "id": "70457fc4",
+   "metadata": {
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Epoch 1/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.5868 - loss: 0.6665\n",
+      "Epoch 2/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 996us/step - accuracy: 0.6839 - loss: 0.5896\n",
+      "Epoch 3/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7129 - loss: 0.5507\n",
+      "Epoch 4/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7210 - loss: 0.5469\n",
+      "Epoch 5/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7357 - loss: 0.5340\n",
+      "Epoch 6/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7321 - loss: 0.5340\n",
+      "Epoch 7/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7391 - loss: 0.5285\n",
+      "Epoch 8/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 970us/step - accuracy: 0.7347 - loss: 0.5250\n",
+      "Epoch 9/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7366 - loss: 0.5278\n",
+      "Epoch 10/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7389 - loss: 0.5239\n",
+      "Epoch 11/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7415 - loss: 0.5173\n",
+      "Epoch 12/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 995us/step - accuracy: 0.7397 - loss: 0.5161\n",
+      "Epoch 13/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 988us/step - accuracy: 0.7450 - loss: 0.5086\n",
+      "Epoch 14/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7406 - loss: 0.5171\n",
+      "Epoch 15/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7449 - loss: 0.5158\n",
+      "Epoch 16/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7390 - loss: 0.5161\n",
+      "Epoch 17/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7464 - loss: 0.5104\n",
+      "Epoch 18/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7397 - loss: 0.5166\n",
+      "Epoch 19/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7435 - loss: 0.5091\n",
+      "Epoch 20/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7487 - loss: 0.5036\n",
+      "Epoch 21/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 993us/step - accuracy: 0.7451 - loss: 0.5093\n",
+      "Epoch 22/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7436 - loss: 0.5097\n",
+      "Epoch 23/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7492 - loss: 0.5083\n",
+      "Epoch 24/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 975us/step - accuracy: 0.7525 - loss: 0.5020\n",
+      "Epoch 25/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7454 - loss: 0.5097\n",
+      "Epoch 26/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7607 - loss: 0.4936\n",
+      "Epoch 27/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7600 - loss: 0.4967\n",
+      "Epoch 28/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7551 - loss: 0.4956\n",
+      "Epoch 29/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7548 - loss: 0.4991\n",
+      "Epoch 30/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7581 - loss: 0.4969\n",
+      "Epoch 31/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7594 - loss: 0.4947\n",
+      "Epoch 32/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7554 - loss: 0.4950\n",
+      "Epoch 33/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7642 - loss: 0.4859\n",
+      "Epoch 34/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7597 - loss: 0.4904\n",
+      "Epoch 35/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7617 - loss: 0.4908\n",
+      "Epoch 36/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7532 - loss: 0.4950\n",
+      "Epoch 37/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7585 - loss: 0.4984\n",
+      "Epoch 38/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7610 - loss: 0.4916\n",
+      "Epoch 39/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7615 - loss: 0.4930\n",
+      "Epoch 40/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7656 - loss: 0.4892\n",
+      "Epoch 41/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7655 - loss: 0.4857\n",
+      "Epoch 42/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7563 - loss: 0.4924\n",
+      "Epoch 43/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7578 - loss: 0.4941\n",
+      "Epoch 44/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7566 - loss: 0.4927\n",
+      "Epoch 45/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7674 - loss: 0.4845\n",
+      "Epoch 46/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7617 - loss: 0.4910\n",
+      "Epoch 47/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7634 - loss: 0.4850\n",
+      "Epoch 48/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7629 - loss: 0.4876\n",
+      "Epoch 49/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7610 - loss: 0.4871\n",
+      "Epoch 50/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7673 - loss: 0.4815\n",
+      "Epoch 51/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7583 - loss: 0.4923\n",
+      "Epoch 52/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7633 - loss: 0.4850\n",
+      "Epoch 53/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7581 - loss: 0.4914\n",
+      "Epoch 54/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7640 - loss: 0.4871\n",
+      "Epoch 55/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7665 - loss: 0.4853\n",
+      "Epoch 56/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7641 - loss: 0.4869\n",
+      "Epoch 57/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7612 - loss: 0.4890\n",
+      "Epoch 58/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7580 - loss: 0.4925\n",
+      "Epoch 59/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7581 - loss: 0.4900\n",
+      "Epoch 60/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7617 - loss: 0.4895\n",
+      "Epoch 61/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 978us/step - accuracy: 0.7692 - loss: 0.4825\n",
+      "Epoch 62/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7637 - loss: 0.4840\n",
+      "Epoch 63/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7627 - loss: 0.4871\n",
+      "Epoch 64/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7589 - loss: 0.4848\n",
+      "Epoch 65/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 971us/step - accuracy: 0.7570 - loss: 0.4875\n",
+      "Epoch 66/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7661 - loss: 0.4823\n",
+      "Epoch 67/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7588 - loss: 0.4897\n",
+      "Epoch 68/100\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7657 - loss: 0.4824\n",
+      "Epoch 69/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7662 - loss: 0.4889\n",
+      "Epoch 70/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 954us/step - accuracy: 0.7603 - loss: 0.4900\n",
+      "Epoch 71/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 954us/step - accuracy: 0.7702 - loss: 0.4783\n",
+      "Epoch 72/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 992us/step - accuracy: 0.7616 - loss: 0.4927\n",
+      "Epoch 73/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7680 - loss: 0.4793\n",
+      "Epoch 74/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7581 - loss: 0.4863\n",
+      "Epoch 75/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7648 - loss: 0.4880\n",
+      "Epoch 76/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7676 - loss: 0.4837\n",
+      "Epoch 77/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7738 - loss: 0.4784\n",
+      "Epoch 78/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 972us/step - accuracy: 0.7653 - loss: 0.4787\n",
+      "Epoch 79/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7638 - loss: 0.4864\n",
+      "Epoch 80/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7707 - loss: 0.4741\n",
+      "Epoch 81/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7688 - loss: 0.4812\n",
+      "Epoch 82/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7690 - loss: 0.4809\n",
+      "Epoch 83/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7686 - loss: 0.4800\n",
+      "Epoch 84/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7590 - loss: 0.4859\n",
+      "Epoch 85/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7612 - loss: 0.4828\n",
+      "Epoch 86/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7699 - loss: 0.4770\n",
+      "Epoch 87/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 981us/step - accuracy: 0.7672 - loss: 0.4819\n",
+      "Epoch 88/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7612 - loss: 0.4869\n",
+      "Epoch 89/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7609 - loss: 0.4817\n",
+      "Epoch 90/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7622 - loss: 0.4860\n",
+      "Epoch 91/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7604 - loss: 0.4844\n",
+      "Epoch 92/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 950us/step - accuracy: 0.7667 - loss: 0.4809\n",
+      "Epoch 93/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7663 - loss: 0.4758\n",
+      "Epoch 94/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7700 - loss: 0.4765\n",
+      "Epoch 95/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 975us/step - accuracy: 0.7710 - loss: 0.4773\n",
+      "Epoch 96/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7649 - loss: 0.4839\n",
+      "Epoch 97/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7696 - loss: 0.4756\n",
+      "Epoch 98/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7667 - loss: 0.4790\n",
+      "Epoch 99/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7593 - loss: 0.4861\n",
+      "Epoch 100/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 949us/step - accuracy: 0.7653 - loss: 0.4800\n",
+      "\u001b[1m100/100\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step\n",
+      "              precision    recall  f1-score   support\n",
+      "\n",
+      "           0       0.74      0.76      0.75      1551\n",
+      "           1       0.77      0.74      0.76      1635\n",
+      "\n",
+      "    accuracy                           0.75      3186\n",
+      "   macro avg       0.75      0.75      0.75      3186\n",
+      "weighted avg       0.75      0.75      0.75      3186\n",
+      "\n",
+      "Classification Report : \n",
+      " None\n"
+     ]
+    }
+   ],
+   "source": [
+    "y_pred=ANN(X_train,Y_train,X_test,Y_test,'binary_crossentropy',-1)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "1b94c81f",
+   "metadata": {},
+   "source": [
+    "### 3rd using SMOTE"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 63,
+   "id": "3d18564f",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from imblearn.over_sampling import SMOTE"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 64,
+   "id": "6eae80cf",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "smote=SMOTE(sampling_strategy='minority')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 65,
+   "id": "5d9c467f",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>RowNumber</th>\n",
+       "      <th>CustomerId</th>\n",
+       "      <th>Surname</th>\n",
+       "      <th>CreditScore</th>\n",
+       "      <th>Gender</th>\n",
+       "      <th>Age</th>\n",
+       "      <th>Tenure</th>\n",
+       "      <th>Balance</th>\n",
+       "      <th>NumOfProducts</th>\n",
+       "      <th>HasCrCard</th>\n",
+       "      <th>IsActiveMember</th>\n",
+       "      <th>EstimatedSalary</th>\n",
+       "      <th>Exited</th>\n",
+       "      <th>Geography_France</th>\n",
+       "      <th>Geography_Germany</th>\n",
+       "      <th>Geography_Spain</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>1</td>\n",
+       "      <td>15634602</td>\n",
+       "      <td>Hargrave</td>\n",
+       "      <td>0.538</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.324324</td>\n",
+       "      <td>0.2</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.506735</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>2</td>\n",
+       "      <td>15647311</td>\n",
+       "      <td>Hill</td>\n",
+       "      <td>0.516</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.310811</td>\n",
+       "      <td>0.1</td>\n",
+       "      <td>0.334031</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.562709</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>3</td>\n",
+       "      <td>15619304</td>\n",
+       "      <td>Onio</td>\n",
+       "      <td>0.304</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.324324</td>\n",
+       "      <td>0.8</td>\n",
+       "      <td>0.636357</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.569654</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>4</td>\n",
+       "      <td>15701354</td>\n",
+       "      <td>Boni</td>\n",
+       "      <td>0.698</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.283784</td>\n",
+       "      <td>0.1</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.469120</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>5</td>\n",
+       "      <td>15737888</td>\n",
+       "      <td>Mitchell</td>\n",
+       "      <td>1.000</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.337838</td>\n",
+       "      <td>0.2</td>\n",
+       "      <td>0.500246</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.395400</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>...</th>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9995</th>\n",
+       "      <td>9996</td>\n",
+       "      <td>15606229</td>\n",
+       "      <td>Obijiaku</td>\n",
+       "      <td>0.842</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.283784</td>\n",
+       "      <td>0.5</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.481341</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9996</th>\n",
+       "      <td>9997</td>\n",
+       "      <td>15569892</td>\n",
+       "      <td>Johnstone</td>\n",
+       "      <td>0.332</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.229730</td>\n",
+       "      <td>1.0</td>\n",
+       "      <td>0.228657</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.508490</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9997</th>\n",
+       "      <td>9998</td>\n",
+       "      <td>15584532</td>\n",
+       "      <td>Liu</td>\n",
+       "      <td>0.718</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.243243</td>\n",
+       "      <td>0.7</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.210390</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9998</th>\n",
+       "      <td>9999</td>\n",
+       "      <td>15682355</td>\n",
+       "      <td>Sabbatini</td>\n",
+       "      <td>0.844</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.324324</td>\n",
+       "      <td>0.3</td>\n",
+       "      <td>0.299226</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.464429</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9999</th>\n",
+       "      <td>10000</td>\n",
+       "      <td>15628319</td>\n",
+       "      <td>Walker</td>\n",
+       "      <td>0.884</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.135135</td>\n",
+       "      <td>0.4</td>\n",
+       "      <td>0.518708</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.190914</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "<p>10000 rows × 16 columns</p>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "      RowNumber  CustomerId    Surname  CreditScore  Gender       Age  Tenure  \\\n",
+       "0             1    15634602   Hargrave        0.538       1  0.324324     0.2   \n",
+       "1             2    15647311       Hill        0.516       1  0.310811     0.1   \n",
+       "2             3    15619304       Onio        0.304       1  0.324324     0.8   \n",
+       "3             4    15701354       Boni        0.698       1  0.283784     0.1   \n",
+       "4             5    15737888   Mitchell        1.000       1  0.337838     0.2   \n",
+       "...         ...         ...        ...          ...     ...       ...     ...   \n",
+       "9995       9996    15606229   Obijiaku        0.842       0  0.283784     0.5   \n",
+       "9996       9997    15569892  Johnstone        0.332       0  0.229730     1.0   \n",
+       "9997       9998    15584532        Liu        0.718       1  0.243243     0.7   \n",
+       "9998       9999    15682355  Sabbatini        0.844       0  0.324324     0.3   \n",
+       "9999      10000    15628319     Walker        0.884       1  0.135135     0.4   \n",
+       "\n",
+       "       Balance  NumOfProducts  HasCrCard  IsActiveMember  EstimatedSalary  \\\n",
+       "0     0.000000              0          1               1         0.506735   \n",
+       "1     0.334031              0          0               1         0.562709   \n",
+       "2     0.636357              1          1               0         0.569654   \n",
+       "3     0.000000              1          0               0         0.469120   \n",
+       "4     0.500246              0          1               1         0.395400   \n",
+       "...        ...            ...        ...             ...              ...   \n",
+       "9995  0.000000              1          1               0         0.481341   \n",
+       "9996  0.228657              0          1               1         0.508490   \n",
+       "9997  0.000000              0          0               1         0.210390   \n",
+       "9998  0.299226              1          1               0         0.464429   \n",
+       "9999  0.518708              0          1               0         0.190914   \n",
+       "\n",
+       "      Exited  Geography_France  Geography_Germany  Geography_Spain  \n",
+       "0          1                 1                  0                0  \n",
+       "1          0                 0                  0                1  \n",
+       "2          1                 1                  0                0  \n",
+       "3          0                 1                  0                0  \n",
+       "4          0                 0                  0                1  \n",
+       "...      ...               ...                ...              ...  \n",
+       "9995       0                 1                  0                0  \n",
+       "9996       0                 1                  0                0  \n",
+       "9997       1                 1                  0                0  \n",
+       "9998       1                 0                  1                0  \n",
+       "9999       0                 1                  0                0  \n",
+       "\n",
+       "[10000 rows x 16 columns]"
+      ]
+     },
+     "execution_count": 65,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 66,
+   "id": "c183b5b0",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "X=df.drop(columns=['RowNumber','CustomerId','Surname','Exited'])\n",
+    "Y=df['Exited']"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 67,
+   "id": "ec6bd5d8",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "X_sm,Y_sm=smote.fit_resample(X,Y)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 68,
+   "id": "0935af14",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "Exited\n",
+       "1    7963\n",
+       "0    7963\n",
+       "Name: count, dtype: int64"
+      ]
+     },
+     "execution_count": 68,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "Y_sm.value_counts()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 69,
+   "id": "9b499a47",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "X_train,X_test,Y_train,Y_test=train_test_split(X_sm,Y_sm,test_size=0.2,stratify=Y_sm)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 70,
+   "id": "774dabfc",
+   "metadata": {
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Epoch 1/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.5786 - loss: 0.6752\n",
+      "Epoch 2/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.6902 - loss: 0.5963\n",
+      "Epoch 3/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7004 - loss: 0.5731\n",
+      "Epoch 4/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7202 - loss: 0.5557\n",
+      "Epoch 5/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 970us/step - accuracy: 0.7274 - loss: 0.5405\n",
+      "Epoch 6/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7241 - loss: 0.5459\n",
+      "Epoch 7/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7347 - loss: 0.5384\n",
+      "Epoch 8/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7355 - loss: 0.5310\n",
+      "Epoch 9/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 996us/step - accuracy: 0.7382 - loss: 0.5222\n",
+      "Epoch 10/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7415 - loss: 0.5298\n",
+      "Epoch 11/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 974us/step - accuracy: 0.7310 - loss: 0.5352\n",
+      "Epoch 12/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 982us/step - accuracy: 0.7415 - loss: 0.5180\n",
+      "Epoch 13/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7445 - loss: 0.5163\n",
+      "Epoch 14/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7391 - loss: 0.5188\n",
+      "Epoch 15/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7399 - loss: 0.5222\n",
+      "Epoch 16/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 993us/step - accuracy: 0.7397 - loss: 0.5211\n",
+      "Epoch 17/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7409 - loss: 0.5185\n",
+      "Epoch 18/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7432 - loss: 0.5149\n",
+      "Epoch 19/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7526 - loss: 0.5092\n",
+      "Epoch 20/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7412 - loss: 0.5203\n",
+      "Epoch 21/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7482 - loss: 0.5100\n",
+      "Epoch 22/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7448 - loss: 0.5132\n",
+      "Epoch 23/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7539 - loss: 0.5019\n",
+      "Epoch 24/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7437 - loss: 0.5078\n",
+      "Epoch 25/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7418 - loss: 0.5176\n",
+      "Epoch 26/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7502 - loss: 0.5027\n",
+      "Epoch 27/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7545 - loss: 0.4977\n",
+      "Epoch 28/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 982us/step - accuracy: 0.7458 - loss: 0.5097\n",
+      "Epoch 29/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7518 - loss: 0.5082\n",
+      "Epoch 30/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7508 - loss: 0.5004\n",
+      "Epoch 31/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7516 - loss: 0.5029\n",
+      "Epoch 32/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7526 - loss: 0.5013\n",
+      "Epoch 33/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7525 - loss: 0.5068\n",
+      "Epoch 34/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7594 - loss: 0.4911\n",
+      "Epoch 35/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7578 - loss: 0.4951\n",
+      "Epoch 36/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7590 - loss: 0.4925\n",
+      "Epoch 37/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7552 - loss: 0.5036\n",
+      "Epoch 38/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7563 - loss: 0.4938\n",
+      "Epoch 39/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7660 - loss: 0.4871\n",
+      "Epoch 40/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7561 - loss: 0.4980\n",
+      "Epoch 41/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7583 - loss: 0.4915\n",
+      "Epoch 42/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7589 - loss: 0.4940\n",
+      "Epoch 43/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7644 - loss: 0.4879\n",
+      "Epoch 44/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7615 - loss: 0.4932\n",
+      "Epoch 45/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7659 - loss: 0.4822\n",
+      "Epoch 46/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7643 - loss: 0.4826\n",
+      "Epoch 47/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7605 - loss: 0.4930\n",
+      "Epoch 48/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 959us/step - accuracy: 0.7581 - loss: 0.4929\n",
+      "Epoch 49/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7667 - loss: 0.4867\n",
+      "Epoch 50/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7570 - loss: 0.4950\n",
+      "Epoch 51/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7603 - loss: 0.4885\n",
+      "Epoch 52/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7633 - loss: 0.4871\n",
+      "Epoch 53/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7659 - loss: 0.4871\n",
+      "Epoch 54/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7642 - loss: 0.4843\n",
+      "Epoch 55/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7602 - loss: 0.4882\n",
+      "Epoch 56/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7669 - loss: 0.4841\n",
+      "Epoch 57/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7547 - loss: 0.4861\n",
+      "Epoch 58/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7602 - loss: 0.4871\n",
+      "Epoch 59/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7593 - loss: 0.4917\n",
+      "Epoch 60/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7645 - loss: 0.4912\n",
+      "Epoch 61/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7634 - loss: 0.4866\n",
+      "Epoch 62/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7720 - loss: 0.4793\n",
+      "Epoch 63/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7675 - loss: 0.4789  \n",
+      "Epoch 64/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7690 - loss: 0.4801\n",
+      "Epoch 65/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7660 - loss: 0.4780\n",
+      "Epoch 66/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7712 - loss: 0.4827\n",
+      "Epoch 67/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7690 - loss: 0.4833\n",
+      "Epoch 68/100\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7637 - loss: 0.4795\n",
+      "Epoch 69/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7687 - loss: 0.4830\n",
+      "Epoch 70/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7593 - loss: 0.4920\n",
+      "Epoch 71/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7664 - loss: 0.4811\n",
+      "Epoch 72/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7651 - loss: 0.4828\n",
+      "Epoch 73/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7708 - loss: 0.4762\n",
+      "Epoch 74/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7657 - loss: 0.4792\n",
+      "Epoch 75/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7663 - loss: 0.4895\n",
+      "Epoch 76/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7686 - loss: 0.4727\n",
+      "Epoch 77/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7668 - loss: 0.4825\n",
+      "Epoch 78/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7635 - loss: 0.4815\n",
+      "Epoch 79/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 957us/step - accuracy: 0.7712 - loss: 0.4712\n",
+      "Epoch 80/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 968us/step - accuracy: 0.7738 - loss: 0.4791\n",
+      "Epoch 81/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 975us/step - accuracy: 0.7662 - loss: 0.4800\n",
+      "Epoch 82/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7669 - loss: 0.4811\n",
+      "Epoch 83/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 954us/step - accuracy: 0.7643 - loss: 0.4789\n",
+      "Epoch 84/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7680 - loss: 0.4770\n",
+      "Epoch 85/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7701 - loss: 0.4791\n",
+      "Epoch 86/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7705 - loss: 0.4755\n",
+      "Epoch 87/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7685 - loss: 0.4787\n",
+      "Epoch 88/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7700 - loss: 0.4769\n",
+      "Epoch 89/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7699 - loss: 0.4816\n",
+      "Epoch 90/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7737 - loss: 0.4742\n",
+      "Epoch 91/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7677 - loss: 0.4829\n",
+      "Epoch 92/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7647 - loss: 0.4836\n",
+      "Epoch 93/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7638 - loss: 0.4811\n",
+      "Epoch 94/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7716 - loss: 0.4747\n",
+      "Epoch 95/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7677 - loss: 0.4808\n",
+      "Epoch 96/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7712 - loss: 0.4795\n",
+      "Epoch 97/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7733 - loss: 0.4708\n",
+      "Epoch 98/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7743 - loss: 0.4761\n",
+      "Epoch 99/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7758 - loss: 0.4717\n",
+      "Epoch 100/100\n",
+      "\u001b[1m399/399\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7806 - loss: 0.4610\n",
+      "\u001b[1m100/100\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step\n",
+      "              precision    recall  f1-score   support\n",
+      "\n",
+      "           0       0.75      0.80      0.77      1593\n",
+      "           1       0.78      0.74      0.76      1593\n",
+      "\n",
+      "    accuracy                           0.77      3186\n",
+      "   macro avg       0.77      0.77      0.77      3186\n",
+      "weighted avg       0.77      0.77      0.77      3186\n",
+      "\n",
+      "Classification Report : \n",
+      " None\n"
+     ]
+    }
+   ],
+   "source": [
+    "y_preds=ANN(X_train,Y_train,X_test,Y_test,'binary_crossentropy',-1)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "9449b9d1",
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.11.4"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}