forked from langchain-ai/langchain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_contextual_compression.py
25 lines (22 loc) · 1.05 KB
/
test_contextual_compression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
from langchain.embeddings import OpenAIEmbeddings
from langchain.retrievers.contextual_compression import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import EmbeddingsFilter
from langchain.vectorstores import Chroma
def test_contextual_compression_retriever_get_relevant_docs() -> None:
"""Test get_relevant_docs."""
texts = [
"This is a document about the Boston Celtics",
"The Boston Celtics won the game by 20 points",
"I simply love going to the movies",
]
embeddings = OpenAIEmbeddings()
base_compressor = EmbeddingsFilter(embeddings=embeddings, similarity_threshold=0.75)
base_retriever = Chroma.from_texts(texts, embedding=embeddings).as_retriever(
search_kwargs={"k": len(texts)}
)
retriever = ContextualCompressionRetriever(
base_compressor=base_compressor, base_retriever=base_retriever
)
actual = retriever.get_relevant_documents("Tell me about the Celtics")
assert len(actual) == 2
assert texts[-1] not in [d.page_content for d in actual]