-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkeras_biLSTM.py
74 lines (64 loc) · 2.55 KB
/
keras_biLSTM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
"""Sample code for recurrent layer based models
The model code is at line 42; rest are fillers and prerequisities
"""
# ---- Imports ----
import keras
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.models import Sequential
from keras.layers import Dense, Dropout, LSTM, Bidirectional, Embedding
# ---- Data loading ----
# contains a list or series of sentences
# train = ...
# test = ...
# combined = train['text'] + test['text']
# ---- Data processing ----
# set max vocab size
vocab = 10000
# create tokenizer instances
tokenizer = Tokenizer(num_words=vocab, oov_token=0)
# fit the tokenizer on text sequences
tokenizer.fit_on_texts(combined)
# tokenize the complete data
sequence_combined = tokenizer.texts_to_sequences(combined)
# get the max len
max_len = max([len(x) for x in sequence_combined])
# tokenize the train data
train_sequences = tokenizer.texts_to_sequences(train['text'])
# add padding to the data
padded_train_sequence = pad_sequences(train_sequences, maxlen=max_len, dtype='int32', padding='pre', truncating='pre', value=0)
# ---- Model ----
model = Sequential()
# encoder
model.add(keras.Input(shape=(padded_train_sequence.shape[1], ))) # input layer
model.add(Embedding(vocab, 256)) # embedding layer
model.add(Bidirectional(LSTM(256))) # biLSTM layer
# decoder
model.add(Dense(256, kernel_initializer='normal', activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(128, kernel_initializer='normal', activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(64, kernel_initializer='normal', activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(32, kernel_initializer='normal', activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(16, kernel_initializer='normal', activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(8, kernel_initializer='normal', activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(1, activation='linear'))
# summary
model.summary()
# ---- Compile and Train ----
# callbacks
earlystopping = keras.callbacks.EarlyStopping(monitor='loss', patience=3)
# compile
model.compile(loss='mse', optimizer='adam', metrics=['mse','mae'])
# fit
history = model.fit(padded_train_sequence, train['y'], epochs=100, batch_size=16, verbose=2, callbacks=[earlystopping])
# ---- Prediction ----
# prepare testing data
test_sequences = tokenizer.texts_to_sequences(test['text'])
test_padded_sequences = pad_sequences(test_sequences, maxlen=max_len, dtype='int32', padding='pre',truncating='pre', value=0)
# perform prediction
y_pred = model.predict(test_padded_sequences)