forked from huggingface/diffusers
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtest_models_transformer_lumina.py
112 lines (96 loc) · 3.1 KB
/
test_models_transformer_lumina.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import torch
from diffusers import LuminaNextDiT2DModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
torch_device,
)
from ..test_modeling_common import ModelTesterMixin
enable_full_determinism()
class LuminaNextDiT2DModelTransformerTests(ModelTesterMixin, unittest.TestCase):
model_class = LuminaNextDiT2DModel
main_input_name = "hidden_states"
uses_custom_attn_processor = True
@property
def dummy_input(self):
"""
Args:
None
Returns:
Dict: Dictionary of dummy input tensors
"""
batch_size = 2 # N
num_channels = 4 # C
height = width = 16 # H, W
embedding_dim = 32 # D
sequence_length = 16 # L
hidden_states = torch.randn((batch_size, num_channels, height, width)).to(torch_device)
encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device)
timestep = torch.rand(size=(batch_size,)).to(torch_device)
encoder_mask = torch.randn(size=(batch_size, sequence_length)).to(torch_device)
image_rotary_emb = torch.randn((384, 384, 4)).to(torch_device)
return {
"hidden_states": hidden_states,
"encoder_hidden_states": encoder_hidden_states,
"timestep": timestep,
"encoder_mask": encoder_mask,
"image_rotary_emb": image_rotary_emb,
"cross_attention_kwargs": {},
}
@property
def input_shape(self):
"""
Args:
None
Returns:
Tuple: (int, int, int)
"""
return (4, 16, 16)
@property
def output_shape(self):
"""
Args:
None
Returns:
Tuple: (int, int, int)
"""
return (4, 16, 16)
def prepare_init_args_and_inputs_for_common(self):
"""
Args:
None
Returns:
Tuple: (Dict, Dict)
"""
init_dict = {
"sample_size": 16,
"patch_size": 2,
"in_channels": 4,
"hidden_size": 24,
"num_layers": 2,
"num_attention_heads": 3,
"num_kv_heads": 1,
"multiple_of": 16,
"ffn_dim_multiplier": None,
"norm_eps": 1e-5,
"learn_sigma": False,
"qk_norm": True,
"cross_attention_dim": 32,
"scaling_factor": 1.0,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict