forked from huggingface/diffusers
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtest_models_transformer_sd3.py
200 lines (163 loc) · 7.02 KB
/
test_models_transformer_sd3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import torch
from diffusers import SD3Transformer2DModel
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import (
enable_full_determinism,
torch_device,
)
from ..test_modeling_common import ModelTesterMixin
enable_full_determinism()
class SD3TransformerTests(ModelTesterMixin, unittest.TestCase):
model_class = SD3Transformer2DModel
main_input_name = "hidden_states"
model_split_percents = [0.8, 0.8, 0.9]
@property
def dummy_input(self):
batch_size = 2
num_channels = 4
height = width = embedding_dim = 32
pooled_embedding_dim = embedding_dim * 2
sequence_length = 154
hidden_states = torch.randn((batch_size, num_channels, height, width)).to(torch_device)
encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device)
pooled_prompt_embeds = torch.randn((batch_size, pooled_embedding_dim)).to(torch_device)
timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device)
return {
"hidden_states": hidden_states,
"encoder_hidden_states": encoder_hidden_states,
"pooled_projections": pooled_prompt_embeds,
"timestep": timestep,
}
@property
def input_shape(self):
return (4, 32, 32)
@property
def output_shape(self):
return (4, 32, 32)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"sample_size": 32,
"patch_size": 1,
"in_channels": 4,
"num_layers": 4,
"attention_head_dim": 8,
"num_attention_heads": 4,
"caption_projection_dim": 32,
"joint_attention_dim": 32,
"pooled_projection_dim": 64,
"out_channels": 4,
"pos_embed_max_size": 96,
"dual_attention_layers": (),
"qk_norm": None,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_enable_works(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.enable_xformers_memory_efficient_attention()
assert (
model.transformer_blocks[0].attn.processor.__class__.__name__ == "XFormersJointAttnProcessor"
), "xformers is not enabled"
@unittest.skip("SD3Transformer2DModel uses a dedicated attention processor. This test doesn't apply")
def test_set_attn_processor_for_determinism(self):
pass
def test_gradient_checkpointing_is_applied(self):
expected_set = {"SD3Transformer2DModel"}
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
class SD35TransformerTests(ModelTesterMixin, unittest.TestCase):
model_class = SD3Transformer2DModel
main_input_name = "hidden_states"
model_split_percents = [0.8, 0.8, 0.9]
@property
def dummy_input(self):
batch_size = 2
num_channels = 4
height = width = embedding_dim = 32
pooled_embedding_dim = embedding_dim * 2
sequence_length = 154
hidden_states = torch.randn((batch_size, num_channels, height, width)).to(torch_device)
encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device)
pooled_prompt_embeds = torch.randn((batch_size, pooled_embedding_dim)).to(torch_device)
timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device)
return {
"hidden_states": hidden_states,
"encoder_hidden_states": encoder_hidden_states,
"pooled_projections": pooled_prompt_embeds,
"timestep": timestep,
}
@property
def input_shape(self):
return (4, 32, 32)
@property
def output_shape(self):
return (4, 32, 32)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"sample_size": 32,
"patch_size": 1,
"in_channels": 4,
"num_layers": 4,
"attention_head_dim": 8,
"num_attention_heads": 4,
"caption_projection_dim": 32,
"joint_attention_dim": 32,
"pooled_projection_dim": 64,
"out_channels": 4,
"pos_embed_max_size": 96,
"dual_attention_layers": (0,),
"qk_norm": "rms_norm",
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_enable_works(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.enable_xformers_memory_efficient_attention()
assert (
model.transformer_blocks[0].attn.processor.__class__.__name__ == "XFormersJointAttnProcessor"
), "xformers is not enabled"
@unittest.skip("SD3Transformer2DModel uses a dedicated attention processor. This test doesn't apply")
def test_set_attn_processor_for_determinism(self):
pass
def test_gradient_checkpointing_is_applied(self):
expected_set = {"SD3Transformer2DModel"}
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
def test_skip_layers(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict).to(torch_device)
# Forward pass without skipping layers
output_full = model(**inputs_dict).sample
# Forward pass with skipping layers 0 (since there's only one layer in this test setup)
inputs_dict_with_skip = inputs_dict.copy()
inputs_dict_with_skip["skip_layers"] = [0]
output_skip = model(**inputs_dict_with_skip).sample
# Check that the outputs are different
self.assertFalse(
torch.allclose(output_full, output_skip, atol=1e-5), "Outputs should differ when layers are skipped"
)
# Check that the outputs have the same shape
self.assertEqual(output_full.shape, output_skip.shape, "Outputs should have the same shape")