-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathindex.html
153 lines (143 loc) · 7.03 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
---
title: NFStream - a Flexible Network Data Analysis Framework.
layout: generic-page
nav_exclude: true
---
<div class="lp-container">
<header class="lp-header">
<meta name="image" property="og:image" content="https://www.nfstream.org/resources/preview.png">
<div class="lp-center">
<h1 style="font-weight: bold">NFStream: Flexible Network Data Analysis Framework</h1>
<h2 style="padding-bottom: 30px">NFStream is a multiplatform Python framework providing fast, flexible, and expressive data structures designed to make working with network data easy and intuitive.</h2>
<a href="https://mybinder.org/v2/gh/aouinizied/nfstream-tutorials/master?filepath=demo_notebook.ipynb" class="btn btn-blue fs-5 mb-3 mb-md-5 mr-5">Live Notebook</a>
<a href="{{ site.baseurl }}/docs/" class="btn btn-blue fs-5 mb-3 mb-md-5">Get Started</a>
</div>
</header>
<section class="lp-section">
<div class="lp-center lp-section-container">
<div class="lp-col lp-col-left">
<h2>Encrypted layer-7 visibility</h2>
<p> NFStream deep packet inspection is based on nDPI. It allows NFStream to perform reliable encrypted
applications identification and metadata fingerprinting (e.g. TLS, SSH, DHCP, HTTP).
</p>
<a href="{{ site.baseurl }}/docs/api#nflow-layer-7-visibility-features-n_dissections0" class="btn btn-blue fs-5 mb-3 mb-md-5">Learn More</a>
</div>
<div class="lp-col">
<img src="{{ site.baseurl }}/resources/apps.png" class="lp-image"/>
</div>
</div>
</section>
<section class="lp-section lp-section-invert">
<div class="lp-center lp-section-container">
<div class="lp-col">
<h2>Network Flow aggregation and statistical features extraction</h2>
<p>Dealing with a big pcap file (or live network interface) and just want to aggregate it as network flows?
NFStream make this path easier in few lines. NFStream extracts statistical flow features and can convert
it directly to a Pandas dataframe or CSV file.</p>
<a href="{{ site.baseurl }}/docs/api#post-mortem-statistical-features-statistical_analysistrue" class="btn btn-blue fs-5 mb-3 mb-md-5">Learn More</a>
</div>
<div class="lp-col lp-col-left">
{% highlight python %}
from nfstream import NFStreamer
online_streamer = NFStreamer(source="eth0")
for flow in online_streamer:
print(flow) # print it.
offline_streamer = NFStreamer(source="tor.pcap",
statistical_analysis=True,
splt_analysis=10)
df = offline_streamer.to_pandas(columns_to_anonymize=())
n_flows = offline_streamer.to_csv(flows_per_file=10000,
columns_to_anonymize=())
{% endhighlight %}
</div>
</div>
</section>
<section class="lp-section">
<div class="lp-center lp-section-container">
<div class="lp-col lp-col-left">
<h2>Flexibility</h2>
<p> NFStream is easily extensible using NFPlugin. It allows to create a new flow feature within few lines of
Python.</p>
<a href="{{ site.baseurl }}/docs/api#nfplugin" class="btn btn-blue fs-5 mb-3 mb-md-5">Learn More</a>
</div>
<div class="lp-col">
{% highlight python %}
from nfstream import NFPlugin, NFStreamer
class FirstPacketIsSyn(NFPlugin):
def on_init(self, packet, flow):
flow.udps.first_pkt_is_syn = packet.syn
streamer = NFStreamer(source='facebook.pcap',
udps=FirstPacketIsSyn())
for flow in extended_streamer:
print(flow.udps.first_pkt_is_syn)
{% endhighlight %}
</div>
</div>
</section>
<section class="lp-section lp-section-invert">
<div class="lp-center lp-section-container">
<div class="lp-col">
<h2>Machine learning oriented</h2>
<p> NFStream aims to make Machine Learning Approaches for network traffic management reproducible and
deployable. By using NFStream as a common framework, researchers ensure that models are trained using the
same feature computation logic and thus, a fair comparison is possible. Moreover, trained models can be
deployed and evaluated on live network using NFPlugins.
</p>
<a href="{{ site.baseurl }}/docs/api#machine-learning-model-train-and-deploy" class="btn btn-blue fs-5 mb-3 mb-md-5">Learn More</a>
</div>
<div class="lp-col lp-col-left">
<img src="{{ site.baseurl }}/resources/mla.png" class="lp-image">
</div>
</div>
</section>
<section class="lp-section">
<div class="lp-center lp-section-container">
<div class="lp-col lp-col-left">
<h2>Multiplatform support</h2>
<p>NFStream is currently supported on major Linux distributions, MacOS and Windows.
You can install pre-built wheels for each platform using pip or build it from source.
</p>
<a href="{{ site.baseurl }}/docs/#installation-guide" class="btn btn-blue fs-5 mb-3 mb-md-5">View Installation Guide</a>
</div>
<div class="lp-col">
<img src="{{ site.baseurl }}/resources/platforms.png" class="lp-image">
</div>
</div>
</section>
<footer class="lp-footer">
<div class="lp-footer-section lp-footer-grid">
<div>
<h3>Documentation</h3>
<ul>
<li><a href="{{ site.baseurl }}/docs/#installation-guide" class="lp-footer-item">Installation Guide</a></li>
<li><a href="{{ site.baseurl }}/docs/design" class="lp-footer-item">Design Overview</a></li>
<li><a href="{{ site.baseurl }}/docs/api" class="lp-footer-item">API Documentation</a></li>
<li><a href="{{ site.baseurl }}/docs/releases" class="lp-footer-item">Releases</a></li>
<li><a href="{{ site.baseurl }}/docs/license" class="lp-footer-item">License</a></li>
</ul>
</div>
<div>
<h3>Community</h3>
<ul>
<li><a target="_blank" href="https://github.com/aouinizied/nfstream" class="lp-footer-item">GitHub</a></li>
<li><a target="_blank" href="https://gitter.im/nfstream/community" class="lp-footer-item">Gitter</a></li>
<li><a href="{{ site.baseurl }}/docs/community#contribute" class="lp-footer-item">Contribute</a></li>
</ul>
</div>
<div>
<h3>Supporting Organizations</h3>
<ul>
<img src="{{ site.baseurl }}{{ site.logo_sah }}" width="{{ site.logo_width }}" height="57">
<img src="{{ site.baseurl }}{{ site.logo_tuke }}" width="{{ site.logo_width }}" height="57">
<img src="{{ site.baseurl }}{{ site.logo_ntop }}" width="{{ site.logo_width }}" height="57">
<img src="{{ site.baseurl }}{{ site.logo_nmap }}" width="{{ site.logo_width }}" height="57">
<img src="{{ site.baseurl }}{{ site.logo_google }}" width="{{ site.logo_width }}" height="57">
</ul>
</div>
</div>
<div class="lp-footer-section lp-footer-copyright">
<img src="{{ site.baseurl }}{{ site.logo_source }}" width="{{ site.logo_width }}" height="57" >
<p>Copyright © 2022 NFStream Developers</p>
</div>
</footer>
</div>