forked from TA-Lib/ta-lib-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path__init__.py
344 lines (312 loc) · 9.31 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import atexit
from itertools import chain
from functools import wraps
# If polars is available, wrap talib functions so that they support
# polars.Series input
try:
from polars import Series as _pl_Series
except ImportError as import_error:
try:
if not isinstance(import_error, ModuleNotFoundError) or import_error.name != 'polars':
# Propagate the error when the module exists but failed to be imported.
raise import_error
# `ModuleNotFoundError` was introduced in Python 3.6.
except NameError:
pass
# polars not available, nothing to wrap
_pl_Series = None
# If pandas is available, wrap talib functions so that they support
# pandas.Series input
try:
from pandas import Series as _pd_Series
except ImportError as import_error:
try:
if not isinstance(import_error, ModuleNotFoundError) or import_error.name != 'pandas':
# Propagate the error when the module exists but failed to be imported.
raise import_error
# `ModuleNotFoundError` was introduced in Python 3.6.
except NameError:
pass
# pandas not available, nothing to wrap
_pd_Series = None
if _pl_Series is not None or _pd_Series is not None:
def _wrapper(func):
@wraps(func)
def wrapper(*args, **kwds):
if _pl_Series is not None:
use_pl = any(isinstance(arg, _pl_Series) for arg in args) or \
any(isinstance(v, _pl_Series) for v in kwds.values())
else:
use_pl = False
if _pd_Series is not None:
use_pd = any(isinstance(arg, _pd_Series) for arg in args) or \
any(isinstance(v, _pd_Series) for v in kwds.values())
else:
use_pd = False
if use_pl and use_pd:
raise Exception("Cannot mix polars and pandas")
# Use float64 values if polars or pandas, else use values as passed
if use_pl:
_args = [arg.to_numpy().astype(float) if isinstance(arg, _pl_Series) else
arg for arg in args]
_kwds = {k: v.to_numpy().astype(float) if isinstance(v, _pl_Series) else
v for k, v in kwds.items()}
elif use_pd:
index = next(arg.index
for arg in chain(args, kwds.values())
if isinstance(arg, _pd_Series))
_args = [arg.to_numpy().astype(float) if isinstance(arg, _pd_Series) else
arg for arg in args]
_kwds = {k: v.to_numpy().astype(float) if isinstance(v, _pd_Series) else
v for k, v in kwds.items()}
else:
_args = args
_kwds = kwds
result = func(*_args, **_kwds)
# check to see if we got a streaming result
first_result = result[0] if isinstance(result, tuple) else result
is_streaming_fn_result = not hasattr(first_result, '__len__')
if is_streaming_fn_result:
return result
# Series was passed in, Series gets out
if use_pl:
if isinstance(result, tuple):
return tuple(_pl_Series(arr) for arr in result)
else:
return _pl_Series(result)
elif use_pd:
if isinstance(result, tuple):
return tuple(_pd_Series(arr, index=index) for arr in result)
else:
return _pd_Series(result, index=index)
else:
return result
return wrapper
else:
_wrapper = lambda x: x
from ._ta_lib import (
_ta_initialize, _ta_shutdown, MA_Type, __ta_version__,
_ta_set_unstable_period as set_unstable_period,
_ta_get_unstable_period as get_unstable_period,
_ta_set_compatibility as set_compatibility,
_ta_get_compatibility as get_compatibility,
__TA_FUNCTION_NAMES__
)
# import all the func and stream functions
from ._ta_lib import *
# wrap them for polars or pandas support
func = __import__("_ta_lib", globals(), locals(), __TA_FUNCTION_NAMES__, level=1)
for func_name in __TA_FUNCTION_NAMES__:
wrapped_func = _wrapper(getattr(func, func_name))
setattr(func, func_name, wrapped_func)
globals()[func_name] = wrapped_func
stream_func_names = ['stream_%s' % fname for fname in __TA_FUNCTION_NAMES__]
stream = __import__("stream", globals(), locals(), stream_func_names, level=1)
for func_name, stream_func_name in zip(__TA_FUNCTION_NAMES__, stream_func_names):
wrapped_func = _wrapper(getattr(stream, func_name))
setattr(stream, func_name, wrapped_func)
globals()[stream_func_name] = wrapped_func
__version__ = '0.6.0'
# In order to use this python library, talib (i.e. this __file__) will be
# imported at some point, either explicitly or indirectly via talib.func
# or talib.abstract. Here, we handle initializing and shutting down the
# underlying TA-Lib. Initialization happens on import, before any other TA-Lib
# functions are called. Finally, when the python process exits, we shutdown
# the underlying TA-Lib.
_ta_initialize()
atexit.register(_ta_shutdown)
__function_groups__ = {
'Cycle Indicators': [
'HT_DCPERIOD',
'HT_DCPHASE',
'HT_PHASOR',
'HT_SINE',
'HT_TRENDMODE',
],
'Math Operators': [
'ADD',
'DIV',
'MAX',
'MAXINDEX',
'MIN',
'MININDEX',
'MINMAX',
'MINMAXINDEX',
'MULT',
'SUB',
'SUM',
],
'Math Transform': [
'ACOS',
'ASIN',
'ATAN',
'CEIL',
'COS',
'COSH',
'EXP',
'FLOOR',
'LN',
'LOG10',
'SIN',
'SINH',
'SQRT',
'TAN',
'TANH',
],
'Momentum Indicators': [
'ADX',
'ADXR',
'APO',
'AROON',
'AROONOSC',
'BOP',
'CCI',
'CMO',
'DX',
'MACD',
'MACDEXT',
'MACDFIX',
'MFI',
'MINUS_DI',
'MINUS_DM',
'MOM',
'PLUS_DI',
'PLUS_DM',
'PPO',
'ROC',
'ROCP',
'ROCR',
'ROCR100',
'RSI',
'STOCH',
'STOCHF',
'STOCHRSI',
'TRIX',
'ULTOSC',
'WILLR',
],
'Overlap Studies': [
'BBANDS',
'DEMA',
'EMA',
'HT_TRENDLINE',
'KAMA',
'MA',
'MAMA',
'MAVP',
'MIDPOINT',
'MIDPRICE',
'SAR',
'SAREXT',
'SMA',
'T3',
'TEMA',
'TRIMA',
'WMA',
],
'Pattern Recognition': [
'CDL2CROWS',
'CDL3BLACKCROWS',
'CDL3INSIDE',
'CDL3LINESTRIKE',
'CDL3OUTSIDE',
'CDL3STARSINSOUTH',
'CDL3WHITESOLDIERS',
'CDLABANDONEDBABY',
'CDLADVANCEBLOCK',
'CDLBELTHOLD',
'CDLBREAKAWAY',
'CDLCLOSINGMARUBOZU',
'CDLCONCEALBABYSWALL',
'CDLCOUNTERATTACK',
'CDLDARKCLOUDCOVER',
'CDLDOJI',
'CDLDOJISTAR',
'CDLDRAGONFLYDOJI',
'CDLENGULFING',
'CDLEVENINGDOJISTAR',
'CDLEVENINGSTAR',
'CDLGAPSIDESIDEWHITE',
'CDLGRAVESTONEDOJI',
'CDLHAMMER',
'CDLHANGINGMAN',
'CDLHARAMI',
'CDLHARAMICROSS',
'CDLHIGHWAVE',
'CDLHIKKAKE',
'CDLHIKKAKEMOD',
'CDLHOMINGPIGEON',
'CDLIDENTICAL3CROWS',
'CDLINNECK',
'CDLINVERTEDHAMMER',
'CDLKICKING',
'CDLKICKINGBYLENGTH',
'CDLLADDERBOTTOM',
'CDLLONGLEGGEDDOJI',
'CDLLONGLINE',
'CDLMARUBOZU',
'CDLMATCHINGLOW',
'CDLMATHOLD',
'CDLMORNINGDOJISTAR',
'CDLMORNINGSTAR',
'CDLONNECK',
'CDLPIERCING',
'CDLRICKSHAWMAN',
'CDLRISEFALL3METHODS',
'CDLSEPARATINGLINES',
'CDLSHOOTINGSTAR',
'CDLSHORTLINE',
'CDLSPINNINGTOP',
'CDLSTALLEDPATTERN',
'CDLSTICKSANDWICH',
'CDLTAKURI',
'CDLTASUKIGAP',
'CDLTHRUSTING',
'CDLTRISTAR',
'CDLUNIQUE3RIVER',
'CDLUPSIDEGAP2CROWS',
'CDLXSIDEGAP3METHODS',
],
'Price Transform': [
'AVGPRICE',
'MEDPRICE',
'TYPPRICE',
'WCLPRICE',
],
'Statistic Functions': [
'BETA',
'CORREL',
'LINEARREG',
'LINEARREG_ANGLE',
'LINEARREG_INTERCEPT',
'LINEARREG_SLOPE',
'STDDEV',
'TSF',
'VAR',
],
'Volatility Indicators': [
'ATR',
'NATR',
'TRANGE',
],
'Volume Indicators': [
'AD',
'ADOSC',
'OBV'
],
}
def get_functions():
"""
Returns a list of all the functions supported by TALIB
"""
ret = []
for group in __function_groups__:
ret.extend(__function_groups__[group])
return ret
def get_function_groups():
"""
Returns a dict with keys of function-group names and values of lists
of function names ie {'group_names': ['function_names']}
"""
return __function_groups__.copy()
__all__ = ['get_functions', 'get_function_groups'] + __TA_FUNCTION_NAMES__ + ["stream_%s" % name for name in __TA_FUNCTION_NAMES__]