Skip to content

Files

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Oct 6, 2015
Oct 21, 2015
Apr 9, 2017

Sebastian Raschka, 2015

Python Machine Learning - Code Examples

Chapter 6 - Learning Best Practices for Model Evaluation and Hyperparameter Tuning

  • Streamlining workflows with pipelines
    • Loading the Breast Cancer Wisconsin dataset
    • Combining transformers and estimators in a pipeline
  • Using k-fold cross-validation to assess model performance
    • The holdout method
    • K-fold cross-validation
  • Debugging algorithms with learning and validation curves
    • Diagnosing bias and variance problems with learning curves
    • Addressing overfitting and underfitting with validation curves
  • Fine-tuning machine learning models via grid search
    • Tuning hyperparameters via grid search
    • Algorithm selection with nested cross-validation
  • Looking at different performance evaluation metrics
    • Reading a confusion matrix
    • Optimizing the precision and recall of a classification model
    • Plotting a receiver operating characteristic
    • The scoring metrics for multiclass classification
  • Summary