Skip to content

erf performance regression on Windows #495

Open
@johnnychen94

Description

@johnnychen94

We recently upgraded our Julia from 1.10.8 to 1.10.9 and noticed the performance difference of erf.

using BenchmarkTools
using SpecialFunctions

@btime erf.(-5.0:1e-6:5.0);

The benchmark is running on my laptop windows and WSL(ubuntu) by switching different OpenLibm_jll versions.
The SpecialFunctions I use is the master branch version (738435a)

Julia Version 1.10.9
Commit 5595d20a28 (2025-03-10 12:51 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Windows (x86_64-w64-mingw32)
  CPU: 20 × 12th Gen Intel(R) Core(TM) i7-12700H
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, alderlake)
Threads: 1 default, 0 interactive, 1 GC (on 20 virtual cores)
julia version OpenLibm_jll version OS time (ms)
1.10.9 0.8.5+0 Windows 375.325
1.10.9 0.8.5+0 Linux 195.182
1.10.9 0.8.4+1 Windows 362.406
1.10.9 0.8.4+1 Linux 198.031
1.10.9 0.8.4+0 Windows 368.287
1.10.9 0.8.4+0 Linux 193.683
1.10.9 0.8.1+4 Windows 363.095
1.10.9 0.8.1+4 Linux 197.910
1.10.9 0.8.1+3 Windows 187.219
1.10.9 0.8.1+3 Linux 190.244
1.10.9 0.8.1+2 Windows 189.346
1.10.9 0.8.1+2 Linux 204.383

The erf's performance on windows has dropped 2x since OpenLibm_jll v0.8.1+4.

P.S. Julia 1.10.8 ships OpenLibm_jll v0.8.1+2, and Julia 1.10.9 ships OpenLibm_jll v0.8.1+4

Metadata

Metadata

Assignees

No one assigned

    Labels

    dependenciesPull requests that update a dependency file

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions