| title | emoji | colorFrom | colorTo | sdk | pinned | suggested_hardware |
|---|---|---|---|---|---|---|
Real-Time Latent Consistency Model Image-to-Image ControlNet |
🖼️🖼️ |
gray |
indigo |
docker |
false |
a10g-small |
This demo showcases Latent Consistency Model (LCM) using Diffusers with a MJPEG stream server. You can read more about LCM + LoRAs with diffusers here.
You need a webcam to run this demo. 🤗
See a collecting with live demos here
You need CUDA and Python 3.10, Node > 19, Mac with an M1/M2/M3 chip or Intel Arc GPU
python -m venv venv
source venv/bin/activate
pip3 install -r requirements.txt
cd frontend && npm install && npm run build && cd ..
python run.py --reload --pipeline controlnetYou can build your own pipeline following examples here here, don't forget to fuild the frontend first
cd frontend && npm install && npm run build && cd ..python run.py --reload --pipeline img2img python run.py --reload --pipeline txt2img python run.py --reload --pipeline controlnet Using LCM-LoRA, giving it the super power of doing inference in as little as 4 steps. Learn more here or technical report
python run.py --reload --pipeline controlnetLoraSD15or SDXL, note that SDXL is slower than SD15 since the inference runs on 1024x1024 images
python run.py --reload --pipeline controlnetLoraSDXLpython run.py --reload --pipeline txt2imgLoraor
python run.py --reload --pipeline txt2imgLoraSDXLTIMEOUT: limit user session timeout
SAFETY_CHECKER: disabled if you want NSFW filter off
MAX_QUEUE_SIZE: limit number of users on current app instance
TORCH_COMPILE: enable if you want to use torch compile for faster inference works well on A100 GPUs
USE_TAESD: enable if you want to use Autoencoder Tiny
If you run using bash build-run.sh you can set PIPELINE variables to choose the pipeline you want to run
PIPELINE=txt2imgLoraSDXL bash build-run.shand setting environment variables
TIMEOUT=120 SAFETY_CHECKER=True MAX_QUEUE_SIZE=4 python run.py --reload --pipeline txt2imgLoraSDXLIf you're running locally and want to test it on Mobile Safari, the webserver needs to be served over HTTPS, or follow this instruction on my comment
openssl req -newkey rsa:4096 -nodes -keyout key.pem -x509 -days 365 -out certificate.pem
python run.py --reload --ssl-certfile=certificate.pem --ssl-keyfile=key.pemYou need NVIDIA Container Toolkit for Docker, defaults to `controlnet``
docker build -t lcm-live .
docker run -ti -p 7860:7860 --gpus all lcm-liveor with environment variables
docker run -ti -e PIPELINE=txt2imgLoraSDXL -p 7860:7860 --gpus all lcm-livepython run.py --reload https://huggingface.co/spaces/radames/Real-Time-Latent-Consistency-Model