.rst-content table.docutils {
width: 100%;
table-layout: fixed;
border: none;
}
table.docutils th {
text-align: center;
}
table.docutils .line-block {
margin-left: 0;
margin-bottom: 0;
}
table.docutils code.literal {
color: initial;
}
code.docutils {
background: initial;
border: none;
}
* {
border: none;
}
.rst-content table.docutils thead {
background-color: #d0e0e0;
}
.rst-content table.docutils td {
border-bottom: none;
border-left: none;
}
.rst-content table.docutils td > p {
overflow: auto;
}
.rst-content table.docutils tr:hover {
background-color: #d0e0e0;
}
.rst-content table.docutils:not(.field-list) tr:nth-child(2n-1):hover td {
background-color: initial;
}
#linear-algebra table.docutils thead .row-odd {
background: #ffdddd;
}
#linear-algebra tr:nth-child(2n-1) td {
background: #f9f3f3;
}
#linear-algebra tr:hover {
background: #ffdddd;
}
#linear-algebra tr:nth-child(2n-1):hover td {
background-color: initial;
}
Two container types are provided. :cpp:type:`xt::xarray` (dynamic number of dimensions)
and :cpp:type:`xt::xtensor` (static number of dimensions).
Lazy helper functions return tensor expressions. Return types don't hold any value and are
evaluated upon access or assignment. They can be assigned to a container or directly used in
expressions.
Python 3 - NumPy
C++ 14 - xtensor
:any:`np.linspace(1.0, 10.0, 100) <numpy.linspace>`
:cpp:func:`xt::linspace\<double\>(1.0, 10.0, 100) <xt::linspace>`
:any:`np.logspace(2.0, 3.0, 4) <numpy.logspace>`
:cpp:func:`xt::logspace\<double\>(2.0, 3.0, 4) <xt::logspace>`
:any:`np.arange(3, 7) <numpy.arange>`
:cpp:func:`xt::arange(3, 7) <xt::arange>`
:any:`np.eye(4) <numpy.eye>`
:cpp:func:`xt::eye(4) <xt::eye>`
:any:`np.zeros([3, 4]) <numpy.zeros>`
:cpp:func:`xt::zeros\<double\>({3, 4}) <xt::zeros>`
:any:`np.ones([3, 4]) <numpy.ones>`
:cpp:func:`xt::ones\<double\>({3, 4}) <xt::ones>`
:any:`np.empty([3, 4]) <numpy.empty>`
:cpp:func:`xt::empty\<double\>({3, 4}) <xt::empty>`
:any:`np.meshgrid(x0, x1, x2, indexing='ij') <numpy.meshgrid>`
:cpp:func:`xt::meshgrid(x0, x1, x2) <xt::meshgrid>`
xtensor's :cpp:func:`meshgrid <xt::meshgrid>` implementation corresponds to numpy's 'ij'
indexing order.
See :any:`numpy indexing <numpy:arrays.indexing>` page.
Python 3 - NumPy
C++ 14 - xtensor
a[3, 2]
:cpp:func:`a(3, 2) <xt::xcontainer::operator()>`
:any:`a.flat[4] <numpy.ndarray.flat>`
:cpp:func:`a.flat(4) <xt::xcontainer::flat>`
a[3]
a[:, 2]
a[:5, 1:]
:cpp:func:`xt::view(a, xt::range(_, 5), xt::range(1, _)) <xt::range>`
a[5:1:-1, :]
:cpp:func:`xt::view(a, xt::range(5, 1, -1), xt::all()) <xt::all>`
a[..., 3]
:cpp:func:`xt::strided_view(a, {xt::ellipsis(), 3}) <xt::ellipsis>`
:any:`a[:, np.newaxis] <numpy.newaxis>`
:cpp:func:`xt::view(a, xt::all(), xt::newaxis()) <xt::newaxis>`
xtensor offers lazy numpy-style broadcasting, and universal functions. Unlike numpy, no copy
or temporary variables are created.
Python 3 - NumPy
C++ 14 - xtensor
:any:`np.broadcast(a, [4, 5, 7]) <numpy.broadcast>`
:cpp:func:`xt::broadcast(a, {4, 5, 7}) <xt::broadcast>`
:any:`np.vectorize(f) <numpy.vectorize>`
:cpp:func:`xt::vectorize(f) <xt::vectorize>`
a[a > 5]
:cpp:func:`xt::filter(a, a > 5) <xt::filter>`
a[[0, 1], [0, 0]]
:cpp:func:`xt::index_view(a, {{0, 0}, {1, 0}}) <xt::index_view>`
The random module provides simple ways to create random tensor expressions, lazily.
See :any:`numpy.random` and :ref:`xtensor random <random>` page.
Python 3 - NumPy
C++ 14 - xtensor
:any:`np.random.seed(0) <numpy.random.seed>`
:cpp:func:`xt::random::seed(0) <xt::random::seed>`
:any:`np.random.randn(10, 10) <numpy.random.randn>`
:cpp:func:`xt::random::randn\<double\>({10, 10}) <xt::random::randn>`
:any:`np.random.randint(10, 10) <numpy.random.randint>`
:cpp:func:`xt::random::randint\<int\>({10, 10}) <xt::random::randint>`
:any:`np.random.rand(3, 4) <numpy.random.rand>`
:cpp:func:`xt::random::rand\<double\>({3, 4}) <xt::random::rand>`
:any:`np.random.choice(arr, 5[, replace][, p]) <numpy.random.choice>`
:cpp:func:`xt::random::choice(arr, 5[, weights][, replace]) <xt::random::choice>`
:any:`np.random.shuffle(arr) <numpy.random.shuffle>`
:cpp:func:`xt::random::shuffle(arr) <xt::random::shuffle>`
:any:`np.random.permutation(30) <numpy.random.permutation>`
:cpp:func:`xt::random::permutation(30) <xt::random::permutation>`
Concatenation, splitting, squeezing
Concatenating expressions does not allocate memory, it returns a tensor or view expression holding
closures on the specified arguments.
Python 3 - NumPy
C++ 14 - xtensor
:any:`np.stack([a, b, c], axis=1) <numpy.stack>`
:cpp:func:`xt::stack(xtuple(a, b, c), 1) <xt::stack>`
:any:`np.hstack([a, b, c]) <numpy.hstack>`
:cpp:func:`xt::hstack(xtuple(a, b, c)) <xt::hstack>`
:any:`np.vstack([a, b, c]) <numpy.vstack>`
:cpp:func:`xt::vstack(xtuple(a, b, c)) <xt::vstack>`
:any:`np.concatenate([a, b, c], axis=1) <numpy.concatenate>`
:cpp:func:`xt::concatenate(xtuple(a, b, c), 1) <xt::concatenate>`
:any:`np.tile(a, reps) <numpy.tile>`
:cpp:func:`xt::tile(a, reps) <xt::tile>`
:any:`np.squeeze(a) <numpy.squeeze>`
:cpp:func:`xt::squeeze(a) <xt::squeeze>`
:any:`np.expand_dims(a, 1) <numpy.expand_dims>`
:cpp:func:`xt::expand_dims(a ,1) <xt::expand_dims>`
:any:`np.atleast_3d(a) <numpy.atleast_3d>`
:cpp:func:`xt::atleast_3d(a) <xt::atleast_3d>`
:any:`np.split(a, 4, axis=0) <numpy.split>`
:cpp:func:`xt::split(a, 4, 0) <xt::split>`
:any:`np.hsplit(a, 4) <numpy.hsplit>`
:cpp:func:`xt::hsplit(a, 4) <xt::hsplit>`
:any:`np.vsplit(a, 4) <numpy.vsplit>`
:cpp:func:`xt::vsplit(a, 4) <xt::vsplit>`
:any:`np.trim_zeros(a, trim='fb') <numpy.trim_zeros>`
:cpp:func:`xt::trim_zeros(a, "fb") <xt::trim_zeros>`
:any:`np.pad(a, pad_width, mode='constant', constant_values=0) <numpy.pad>`
:cpp:func:`xt::pad(a, pad_width[, xt::pad_mode::constant][, 0]) <xt::pad>`
In the same spirit as concatenation, the following operations do not allocate any memory and do
not modify the underlying xexpression.
Python3 - NumPy
C++14 - xtensor
:any:`np.nan_to_num(a) <numpy.nan_to_num>`
:cpp:func:`xt::nan_to_num(a) <xt::nan_to_num>`
:any:`np.diag(a) <numpy.diag>`
:cpp:func:`xt::diag(a) <xt::diag>`
:any:`np.diagonal(a) <numpy.diagonal>`
:cpp:func:`xt::diagonal(a) <xt::diagonal>`
:any:`np.triu(a) <numpy.triu>`
:cpp:func:`xt::triu(a) <xt::triu>`
:any:`np.tril(a, k=1) <numpy.tril>`
:cpp:func:`xt::tril(a, 1) <xt::tril>`
:any:`np.flip(a, axis=3) <numpy.flip>`
:cpp:func:`xt::flip(a, 3) <xt::flip>`
:any:`np.flipud(a) <numpy.flipud>`
:cpp:func:`xt::flip(a, 0) <xt::flip>`
:any:`np.fliplr(a) <numpy.fliplr>`
:cpp:func:`xt::flip(a, 1) <xt::flip>`
:any:`np.transpose(a, (1, 0, 2)) <numpy.transpose>`
:cpp:func:`xt::transpose(a, {1, 0, 2}) <xt::transpose>`
:any:`np.swapaxes(a, 0, -1) <numpy.swapaxes>`
:cpp:func:`xt::swapaxes(a, 0, -1) <xt::swapaxes>`
:any:`np.moveaxis(a, 0, -1) <numpy.moveaxis>`
:cpp:func:`xt::moveaxis(a, 0, -1) <xt::moveaxis>`
:any:`np.ravel(a, order='F') <numpy.ravel>`
:cpp:func:`xt::ravel\<xt::layout_type::column_major\>(a) <xt::ravel>`
:any:`np.rot90(a) <numpy.rot90>`
:cpp:func:`xt::rot90(a) <xt::rot90>`
:any:`np.rot90(a, 2, (1, 2)) <numpy.rot90>`
:cpp:func:`xt::rot90\<2\>(a, {1, 2}) <xt::rot90>`
:any:`np.roll(a, 2, axis=1) <numpy.roll>`
:cpp:func:`xt::roll(a, 2, 1) <xt::roll>`
xtensor follows the idioms of the C++ STL providing iterator pairs to iterate on arrays in
different fashions.
Python 3 - NumPy
C++ 14 - xtensor
:any:`for x in np.nditer(a): <numpy.nditer>`
for(auto it=a.begin(); it!=a.end(); ++it)
Iterating over a
with a prescribed broadcasting shape
a.begin({3, 4})
a.end({3, 4})
Iterating over a
in a row-major fashion
a.begin<xt::layout_type::row_major>()
a.begin<xt::layout_type::row_major>()
Iterating over a
in a column-major fashion
a.begin<xt::layout_type::column_major>()
a.end<xt::layout_type::column_major>()
Logical universal functions are truly lazy.
:cpp:func:`xt::where(condition, a, b) <xt::where>` does not evaluate a
where condition
is falsy, and it does not evaluate b
where condition
is truthy.
Python 3 - NumPy
C++ 14 - xtensor
:any:`np.where(a > 5, a, b) <numpy.where>`
:cpp:func:`xt::where(a > 5, a, b) <xt::where>`
:any:`np.where(a > 5) <numpy.where>`
:cpp:func:`xt::where(a > 5) <xt::where>`
:any:`np.argwhere(a > 5) <numpy.argwhere>`
:cpp:func:`xt::argwhere(a > 5) <xt::argwhere>`
:any:`np.any(a) <numpy.any>`
:cpp:func:`xt::any(a) <xt::any>`
:any:`np.all(a) <numpy.all>`
:cpp:func:`xt::all(a) <xt::all>`
:any:`np.isin(a, b) <numpy.isin>`
:cpp:func:`xt::isin(a, b) <xt::isin>`
:any:`np.in1d(a, b) <numpy.in1d>`
:cpp:func:`xt::in1d(a, b) <xt::in1d>`
:any:`np.logical_and(a, b) <numpy.logical_and>`
a && b
:any:`np.logical_or(a, b) <numpy.logical_or>`
a || b
:any:`np.isclose(a, b) <numpy.isclose>`
:cpp:func:`xt::isclose(a, b) <xt::isclose>`
:any:`np.allclose(a, b) <numpy.allclose>`
:cpp:func:`xt::allclose(a, b) <xt::allclose>`
:any:`a = ~b <numpy.invert>`
a = !b
Minimum, Maximum, Sorting
Python3 - NumPy
C++14 - xtensor
:any:`np.amin(a) <numpy.amin>`
:cpp:func:`xt::amin(a) <xt::amin>`
:any:`np.amax(a) <numpy.amax>`
:cpp:func:`xt::amax(a) <xt::amax>`
:any:`np.argmin(a) <numpy.argmin>`
:cpp:func:`xt::argmin(a) <xt::argmin>`
:any:`np.argmax(a, axis=1) <numpy.argmax>`
:cpp:func:`xt::argmax(a, 1) <xt::argmax>`
:any:`np.sort(a, axis=1) <numpy.sort>`
:cpp:func:`xt::sort(a, 1) <xt::sort>`
:any:`np.argsort(a, axis=1) <numpy.argsort>`
:cpp:func:`xt::argsort(a, 1) <xt::argsort>`
:any:`np.unique(a) <numpy.unique>`
:cpp:func:`xt::unique(a) <xt::unique>`
:any:`np.setdiff1d(ar1, ar2) <numpy.setdiff1d>`
:cpp:func:`xt::setdiff1d(ar1, ar2) <xt::setdiff1d>`
:any:`np.partition(a, kth) <numpy.partition>`
:cpp:func:`xt::partition(a, kth) <xt::partition>`
:any:`np.argpartition(a, kth) <numpy.argpartition>`
:cpp:func:`xt::argpartition(a, kth) <xt::argpartition>`
:any:`np.quantile(a, [.1 .3], method="linear") <numpy.quantile>`
:cpp:func:`xt::quantile(a, {.1, .3}, xt::quantile_method::linear) <xt::quantile>`
:any:`np.quantile(a, [.1, .3], axis=1 method="linear") <numpy.quantile>`
:cpp:func:`xt::quantile(a, {.1, .3}, 1, xt::quantile_method::linear) <xt::quantile>`
:cpp:func:`xt::quantile(a, {.1, .3}, 1, 1.0, 1.0) <xt::quantile>`
:any:`np.median(a, axis=1) <numpy.median>`
:cpp:func:`xt::median(a, 1) <xt::median>`
Functions :cpp:func:`xt::real` and :cpp:func:`xt::imag` respectively return views on the real and imaginary part
of a complex expression.
The returned value is an expression holding a closure on the passed argument.
Reducers accumulate values of tensor expressions along specified axes. When no axis is specified,
values are accumulated along all axes. Reducers are lazy, meaning that returned expressions don't
hold any values and are computed upon access or assignment.
Python 3 - NumPy
C++ 14 - xtensor
:any:`np.sum(a, axis=(0, 1)) <numpy.sum>`
:cpp:func:`xt::sum(a, {0, 1}) <xt::sum>`
:any:`np.sum(a, axis=1) <numpy.sum>`
:cpp:func:`xt::sum(a, 1) <xt::sum>`
:any:`np.sum(a) <numpy.sum>`
:cpp:func:`xt::sum(a) <xt::sum>`
:any:`np.prod(a, axis=(0, 1)) <numpy.prod>`
:cpp:func:`xt::prod(a, {0, 1}) <xt::prod>`
:any:`np.prod(a, axis=1) <numpy.prod>`
:cpp:func:`xt::prod(a, 1) <xt::prod>`
:any:`np.prod(a) <numpy.prod>`
:cpp:func:`xt::prod(a) <xt::prod>`
:any:`np.mean(a, axis=(0, 1)) <numpy.mean>`
:cpp:func:`xt::mean(a, {0, 1}) <xt::mean>`
:any:`np.mean(a, axis=1) <numpy.mean>`
:cpp:func:`xt::mean(a, 1) <xt::mean>`
:any:`np.mean(a) <numpy.mean>`
:cpp:func:`xt::mean(a) <xt::mean>`
:any:`np.std(a, [axis]) <numpy.std>`
:cpp:func:`xt::stddev(a, [axis]) <xt::stddev>`
:any:`np.var(a, [axis]) <numpy.var>`
:cpp:func:`xt::variance(a, [axis]) <xt::variance>`
:any:`np.diff(a[, n, axis]) <numpy.diff>`
:cpp:func:`xt::diff(a[, n, axis]) <xt::diff>`
:any:`np.trapz(a, dx=2.0, axis=-1) <numpy.trapz>`
:cpp:func:`xt::trapz(a, 2.0, -1) <xt::trapz>`
:any:`np.trapz(a, x=b, axis=-1) <numpy.trapz>`
:cpp:func:`xt::trapz(a, b, -1) <xt::trapz>`
:any:`np.count_nonzero(a, axis=(0, 1)) <numpy.count_nonzero>`
:cpp:func:`xt::count_nonzero(a, {0, 1}) <xt::count_nonzero>`
:any:`np.count_nonzero(a, axis=1) <numpy.count_nonzero>`
:cpp:func:`xt::count_nonzero(a, 1) <xt::count_nonzero>`
:any:`np.count_nonzero(a) <numpy.count_nonzero>`
:cpp:func:`xt::count_nonzero(a) <xt::count_nonzero>`
More generally, one can use the :cpp:func:`xt::reduce(function, input, axes) <xt::reduce>` which allows the specification
of an arbitrary binary function for the reduction.
The binary function must be commutative and associative up to rounding errors.
NaN functions allow disregarding NaNs during computation, changing the effective number of elements
considered in reductions.
Python3 - NumPy
C++14 - xtensor
:any:`np.nan_to_num(a) <numpy.nan_to_num>`
:cpp:func:`xt::nan_to_num(a) <xt::nan_to_num>`
:any:`np.nanmin(a) <numpy.nanmin>`
:cpp:func:`xt::nanmin(a) <xt::nanmin>`
:any:`np.nanmin(a, axis=(0, 1)) <numpy.nanmin>`
:cpp:func:`xt::nanmin(a, {0, 1}) <xt::nanmin>`
:any:`np.nanmax(a) <numpy.nanmax>`
:cpp:func:`xt::nanmax(a) <xt::nanmax>`
:any:`np.nanmax(a, axis=(0, 1)) <numpy.nanmax>`
:cpp:func:`xt::nanmax(a, {0, 1}) <xt::nanmax>`
:any:`np.nansum(a) <numpy.nansum>`
:cpp:func:`xt::nansum(a) <xt::nansum>`
:any:`np.nansum(a, axis=0) <numpy.nansum>`
:cpp:func:`xt::nansum(a, 0) <xt::nansum>`
:any:`np.nansum(a, axis=(0, 1)) <numpy.nansum>`
:cpp:func:`xt::nansum(a, {0, 1}) <xt::nansum>`
:any:`np.nanprod(a) <numpy.nanprod>`
:cpp:func:`xt::nanprod(a) <xt::nanprod>`
:any:`np.nanprod(a, axis=0) <numpy.nanprod>`
:cpp:func:`xt::nanprod(a, 0) <xt::nanprod>`
:any:`np.nanprod(a, axis=(0, 1)) <numpy.nanprod>`
:cpp:func:`xt::nanprod(a, {0, 1}) <xt::nanprod>`
:any:`np.nancumsum(a) <numpy.nancumsum>`
:cpp:func:`xt::nancumsum(a) <xt::nancumsum>`
:any:`np.nancumsum(a, axis=0) <numpy.nancumsum>`
:cpp:func:`xt::nancumsum(a, 0) <xt::nancumsum>`
:any:`np.nancumprod(a) <numpy.nancumsum>`
:cpp:func:`xt::nancumsum(a) <xt::nancumsum>`
:any:`np.nancumprod(a, axis=0) <numpy.nancumsum>`
:cpp:func:`xt::nancumsum(a, 0) <xt::nancumsum>`
:any:`np.nanmean(a) <numpy.nanmean>`
:cpp:func:`xt::nanmean(a) <xt::nanmean>`
:any:`np.nanmean(a, axis=(0, 1)) <numpy.nanmean>`
:cpp:func:`xt::nanmean(a, {0, 1}) <xt::nanmean>`
:any:`np.nanvar(a) <numpy.nanvar>`
:cpp:func:`xt::nanvar(a) <xt::nanvar>`
:any:`np.nanvar(a, axis=(0, 1)) <numpy.nanvar>`
:cpp:func:`xt::nanvar(a, {0, 1}) <xt::nanvar>`
:any:`np.nanstd(a) <numpy.nanstd>`
:cpp:func:`xt::nanstd(a) <xt::nanstd>`
:any:`np.nanstd(a, axis=(0, 1)) <numpy.nanstd>`
:cpp:func:`xt::nanstd(a, {0, 1}) <xt::nanstd>`
Print options
These options determine the way floating point numbers, tensors and other xtensor expressions are displayed.
Reading npy, csv file formats
Functions :cpp:func:`xt::load_csv` and :cpp:func:`xt::dump_csv` respectively take input and output streams as arguments.
xtensor universal functions are provided for a large set number of mathematical functions.
Basic functions:
Python 3 - NumPy
C++ 14 - xtensor
:any:`np.absolute(a) <numpy.absolute>`
:cpp:func:`xt::abs(a) <xt::abs>`
:any:`np.sign(a) <numpy.sign>`
:cpp:func:`xt::sign(a) <xt::sign>`
:any:`np.remainder(a, b) <numpy.remainder>`
:cpp:func:`xt::remainder(a, b) <xt::remainder>`
:any:`np.minimum(a, b) <numpy.minimum>`
:cpp:func:`xt::minimum(a, b) <xt::minimum>`
:any:`np.maximum(a, b) <numpy.maximum>`
:cpp:func:`xt::maximum(a, b) <xt::maximum>`
:any:`np.clip(a, min, max) <numpy.clip>`
:cpp:func:`xt::clip(a, min, max) <xt::clip>`
:cpp:func:`xt::fma(a, b, c) <xt::fma>`
:any:`np.interp(x, xp, fp, [,left, right]) <numpy.interp>`
:cpp:func:`xt::interp(x, xp, fp, [,left, right]) <xt::interp>`
:any:`np.rad2deg(a) <numpy.rad2deg>`
:cpp:func:`xt::rad2deg(a) <xt::rad2deg>`
:any:`np.degrees(a) <numpy.degrees>`
:cpp:func:`xt::degrees(a) <xt::degrees>`
:any:`np.deg2rad(a) <numpy.deg2rad>`
:cpp:func:`xt::deg2rad(a) <xt::deg2rad>`
:any:`np.radians(a) <numpy.radians>`
:cpp:func:`xt::radians(a) <xt::radians>`
Exponential functions:
Power functions:
Trigonometric functions:
Hyperbolic functions:
Error and gamma functions:
Classification functions:
Histogram:
Python 3 - NumPy
C++ 14 - xtensor
:any:`np.histogram(a, bins[, weights][, density]) <numpy.histogram>`
:cpp:func:`xt::histogram(a, bins[, weights][, density]) <xt::histogram>`
:any:`np.histogram_bin_edges(a, bins[, weights][, left, right][, bins][, mode]) <numpy.histogram_bin_edges>`
:cpp:func:`xt::histogram_bin_edges(a, bins[, weights][, left, right][, bins][, mode]) <xt::histogram_bin_edges>`
:any:`np.bincount(arr) <numpy.bincount>`
:cpp:func:`xt::bincount(arr) <xt::bincount>`
:any:`np.digitize(data, bin_edges[, right]) <numpy.digitize>`
:cpp:func:`xt::digitize(data, bin_edges[, right][, assume_sorted]) <xt::digitize>`
See :ref:`histogram` .
Numerical constants:
Many functions found in the :any:`numpy.linalg` module are implemented in xtensor-blas , a separate package offering BLAS and LAPACK bindings,
as well as a convenient interface replicating the linalg
module.
Please note, however, that while we're trying to be as close to NumPy as possible, some features are not
implemented yet. Most prominently that is broadcasting for all functions except for :cpp:func:`xt::linalg::dot` .
Matrix, vector and tensor products
Python 3 - NumPy
C++ 14 - xtensor
:any:`np.dot(a, b) <numpy.dot>`
:cpp:func:`xt::linalg::dot(a, b) <xt::linalg::dot>`
:any:`np.vdot(a, b) <numpy.vdot>`
:cpp:func:`xt::linalg::vdot(a, b) <xt::linalg::vdot>`
:any:`np.outer(a, b) <numpy.outer>`
:cpp:func:`xt::linalg::outer(a, b) <xt::linalg::outer>`
:any:`np.linalg.matrix_power(a, 123) <numpy.linalg.matrix_power>`
:cpp:func:`xt::linalg::matrix_power(a, 123) <xt::linalg::matrix_power>`
:any:`np.kron(a, b) <numpy.kron>`
:cpp:func:`xt::linalg::kron(a, b) <xt::linalg::kron>`
:any:`np.tensordot(a, b, axes=3) <numpy.tensordot>`
:cpp:func:`xt::linalg::tensordot(a, b, 3) <xt::linalg::tensordot>`
:any:`np.tensordot(a, b, axes=((0,2),(1,3)) <numpy.tensordot>`
:cpp:func:`xt::linalg::tensordot(a, b, {0, 2}, {1, 3}) <xt::linalg::tensordot>`
Decompositions
Matrix eigenvalues
Norms and other numbers
Solving equations and inverting matrices