-
-
Notifications
You must be signed in to change notification settings - Fork 5.6k
/
Copy pathmathconstants.jl
152 lines (116 loc) · 3.18 KB
/
mathconstants.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# This file is a part of Julia. License is MIT: https://julialang.org/license
"""
Base.MathConstants
Module containing the mathematical constants.
See [`π`](@ref), [`ℯ`](@ref), [`γ`](@ref), [`φ`](@ref) and [`catalan`](@ref).
"""
module MathConstants
export π, pi, ℯ, e, γ, eulergamma, catalan, φ, golden
Base.@irrational π pi
Base.@irrational ℯ exp(big(1))
Base.@irrational γ euler
Base.@irrational φ (1+sqrt(big(5)))/2
Base.@irrational catalan catalan
const _KnownIrrational = Union{
typeof(π), typeof(ℯ), typeof(γ), typeof(φ), typeof(catalan)
}
function Rational{BigInt}(::_KnownIrrational)
Base._throw_argument_error_irrational_to_rational_bigint()
end
Base.@assume_effects :foldable function Rational{T}(x::_KnownIrrational) where {T<:Integer}
Base._irrational_to_rational(T, x)
end
Base.@assume_effects :foldable function (::Type{T})(x::_KnownIrrational, r::RoundingMode) where {T<:Union{Float32,Float64}}
Base._irrational_to_float(T, x, r)
end
Base.@assume_effects :foldable function Base.rationalize(::Type{T}, x::_KnownIrrational; tol::Real=0) where {T<:Integer}
Base._rationalize_irrational(T, x, tol)
end
Base.@assume_effects :foldable function Base.lessrational(rx::Rational, x::_KnownIrrational)
Base._lessrational(rx, x)
end
# aliases
"""
π
pi
The constant pi.
Unicode `π` can be typed by writing `\\pi` then pressing tab in the Julia REPL, and in many editors.
See also: [`sinpi`](@ref), [`sincospi`](@ref), [`deg2rad`](@ref).
# Examples
```jldoctest
julia> pi
π = 3.1415926535897...
julia> 1/2pi
0.15915494309189535
```
"""
π, const pi = π
"""
ℯ
e
The constant ℯ.
Unicode `ℯ` can be typed by writing `\\euler` and pressing tab in the Julia REPL, and in many editors.
See also: [`exp`](@ref), [`cis`](@ref), [`cispi`](@ref).
# Examples
```jldoctest
julia> ℯ
ℯ = 2.7182818284590...
julia> log(ℯ)
1
julia> ℯ^(im)π ≈ -1
true
```
"""
ℯ, const e = ℯ
"""
γ
eulergamma
Euler's constant.
# Examples
```jldoctest
julia> Base.MathConstants.eulergamma
γ = 0.5772156649015...
julia> dx = 10^-6;
julia> sum(-exp(-x) * log(x) for x in dx:dx:100) * dx
0.5772078382499133
```
"""
γ, const eulergamma = γ
"""
φ
golden
The golden ratio.
# Examples
```jldoctest
julia> Base.MathConstants.golden
φ = 1.6180339887498...
julia> (2ans - 1)^2 ≈ 5
true
```
"""
φ, const golden = φ
"""
catalan
Catalan's constant.
# Examples
```jldoctest
julia> Base.MathConstants.catalan
catalan = 0.9159655941772...
julia> sum(log(x)/(1+x^2) for x in 1:0.01:10^6) * 0.01
0.9159466120554123
```
"""
catalan
# loop over types to prevent ambiguities for ^(::Number, x)
for T in (AbstractIrrational, Rational, Integer, Number, Complex)
Base.:^(::Irrational{:ℯ}, x::T) = exp(x)
end
Base.literal_pow(::typeof(^), ::Irrational{:ℯ}, ::Val{p}) where {p} = exp(p)
Base.log(::Irrational{:ℯ}) = 1 # use 1 to correctly promote expressions like log(x)/log(ℯ)
Base.log(::Irrational{:ℯ}, x::Number) = log(x)
Base.sin(::Irrational{:π}) = 0.0
Base.cos(::Irrational{:π}) = -1.0
Base.sincos(::Irrational{:π}) = (0.0, -1.0)
Base.tan(::Irrational{:π}) = 0.0
Base.cot(::Irrational{:π}) = -1/0
end # module