-
-
Notifications
You must be signed in to change notification settings - Fork 4.6k
/
Copy pathopenni_feature_persistence.cpp
321 lines (279 loc) · 12.9 KB
/
openni_feature_persistence.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2009-2012, Willow Garage, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Willow Garage, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <pcl/common/time.h>
#include <pcl/console/parse.h>
#include <pcl/features/fpfh_omp.h>
#include <pcl/features/multiscale_feature_persistence.h>
#include <pcl/features/normal_3d_omp.h>
#include <pcl/filters/extract_indices.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/io/openni_camera/openni_driver.h>
#include <pcl/io/openni_grabber.h>
#include <pcl/visualization/cloud_viewer.h>
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <mutex>
#include <thread>
using namespace std::chrono_literals;
// clang-format off
#define FPS_CALC(_WHAT_) \
do { \
static unsigned count = 0; \
static double last = pcl::getTime(); \
double now = pcl::getTime(); \
++count; \
if (now - last >= 1.0) { \
std::cout << "Average framerate(" << _WHAT_ << "): " \
<< double(count) / double(now - last) << " Hz" << std::endl; \
count = 0; \
last = now; \
} \
} while (false)
// clang-format on
constexpr float default_subsampling_leaf_size = 0.02f;
constexpr float default_normal_search_radius = 0.041f;
const double aux[] = {0.21, 0.32};
const std::vector<double> default_scales_vector(aux, aux + 2);
constexpr float default_alpha = 1.2f;
template <typename PointType>
class OpenNIFeaturePersistence {
public:
using Cloud = pcl::PointCloud<PointType>;
using CloudPtr = typename Cloud::Ptr;
using CloudConstPtr = typename Cloud::ConstPtr;
OpenNIFeaturePersistence(float& subsampling_leaf_size,
double& normal_search_radius,
std::vector<float>& scales_vector,
float& alpha,
const std::string& device_id = "")
: viewer("PCL OpenNI Feature Persistence Viewer"), device_id_(device_id)
{
std::cout << "Launching with parameters:\n"
<< " octree_leaf_size = " << subsampling_leaf_size << "\n"
<< " normal_search_radius = " << normal_search_radius << "\n"
<< " persistence_alpha = " << alpha << "\n"
<< " scales = ";
for (const float scale : scales_vector)
std::cout << scale << " ";
std::cout << "\n";
subsampling_filter_.setLeafSize(
subsampling_leaf_size, subsampling_leaf_size, subsampling_leaf_size);
typename pcl::search::KdTree<PointType>::Ptr normal_search_tree(
new typename pcl::search::KdTree<PointType>);
normal_estimation_filter_.setSearchMethod(normal_search_tree);
normal_estimation_filter_.setRadiusSearch(normal_search_radius);
feature_persistence_.setScalesVector(scales_vector);
feature_persistence_.setAlpha(alpha);
fpfh_estimation_.reset(new typename pcl::FPFHEstimationOMP<PointType,
pcl::Normal,
pcl::FPFHSignature33>());
typename pcl::search::KdTree<PointType>::Ptr fpfh_tree(
new typename pcl::search::KdTree<PointType>());
fpfh_estimation_->setSearchMethod(fpfh_tree);
feature_persistence_.setFeatureEstimator(fpfh_estimation_);
feature_persistence_.setDistanceMetric(pcl::CS);
new_cloud_ = false;
}
void
cloud_cb(const CloudConstPtr& cloud)
{
std::lock_guard<std::mutex> lock(mtx_);
// lock while we set our cloud;
FPS_CALC("computation");
// Create temporary clouds
cloud_subsampled_.reset(new typename pcl::PointCloud<PointType>());
normals_.reset(new pcl::PointCloud<pcl::Normal>());
features_.reset(new pcl::PointCloud<pcl::FPFHSignature33>());
feature_indices_.reset(new pcl::Indices());
feature_locations_.reset(new typename pcl::PointCloud<PointType>());
// Subsample input cloud
subsampling_filter_.setInputCloud(cloud);
subsampling_filter_.filter(*cloud_subsampled_);
// Estimate normals
normal_estimation_filter_.setInputCloud(cloud_subsampled_);
normal_estimation_filter_.compute(*normals_);
// Compute persistent features
fpfh_estimation_->setInputCloud(cloud_subsampled_);
fpfh_estimation_->setInputNormals(normals_);
feature_persistence_.determinePersistentFeatures(*features_, feature_indices_);
// Extract feature locations by using indices
extract_indices_filter_.setInputCloud(cloud_subsampled_);
extract_indices_filter_.setIndices(feature_indices_);
extract_indices_filter_.filter(*feature_locations_);
PCL_INFO("Persistent feature locations %zu\n",
static_cast<std::size_t>(feature_locations_->size()));
cloud_ = cloud;
new_cloud_ = true;
}
void
viz_cb(pcl::visualization::PCLVisualizer& viz)
{
std::lock_guard<std::mutex> lock(mtx_);
if (!cloud_) {
std::this_thread::sleep_for(1s);
return;
}
CloudConstPtr temp_cloud;
temp_cloud.swap(cloud_); // here we set cloud_ to null, so that
// Render the data
if (new_cloud_ && feature_locations_) {
viz.removePointCloud("featurecloud");
viz.removePointCloud("OpenNICloud");
colors_.reset(
new typename pcl::visualization::PointCloudColorHandlerCustom<PointType>(
feature_locations_, 255.0, 0.0, 0.0));
viz.addPointCloud(feature_locations_, *colors_, "featurecloud");
viz.addPointCloud(temp_cloud, "OpenNICloud");
new_cloud_ = false;
}
}
void
run()
{
pcl::OpenNIGrabber interface(device_id_);
std::function<void(const CloudConstPtr&)> f = [this](const CloudConstPtr& cloud) {
cloud_cb(cloud);
};
boost::signals2::connection c = interface.registerCallback(f);
viewer.runOnVisualizationThread(
[this](pcl::visualization::PCLVisualizer& viz) { viz_cb(viz); }, "viz_cb");
interface.start();
while (!viewer.wasStopped()) {
std::this_thread::sleep_for(1s);
}
interface.stop();
}
pcl::VoxelGrid<PointType> subsampling_filter_;
pcl::NormalEstimationOMP<PointType, pcl::Normal> normal_estimation_filter_;
typename pcl::FPFHEstimationOMP<PointType, pcl::Normal, pcl::FPFHSignature33>::Ptr
fpfh_estimation_;
pcl::MultiscaleFeaturePersistence<PointType, pcl::FPFHSignature33>
feature_persistence_;
pcl::ExtractIndices<PointType> extract_indices_filter_;
pcl::visualization::CloudViewer viewer;
std::string device_id_;
std::mutex mtx_;
// Data
CloudPtr feature_locations_, cloud_subsampled_;
pcl::PointCloud<pcl::Normal>::Ptr normals_;
pcl::PointCloud<pcl::FPFHSignature33>::Ptr features_;
typename pcl::visualization::PointCloudColorHandlerCustom<PointType>::Ptr colors_;
pcl::IndicesPtr feature_indices_;
CloudConstPtr cloud_;
bool new_cloud_;
};
void
usage(char** argv)
{
// clang-format off
std::cout << "usage: " << argv[0] << " [options]\n\n"
<< "where options are:\n"
<< " -device_id X: specify the device id (default: \"#1\").\n"
<< " -octree_leaf_size X: size of the leaf for the octree-based subsampling filter (default: " << default_subsampling_leaf_size << "\n"
<< " -normal_search_radius X: size of the neighborhood to consider for calculating the local plane and extracting the normals (default: " << default_normal_search_radius << "\n"
<< " -persistence_alpha X: value of alpha for the multiscale feature persistence (default: " << default_alpha << "\n"
<< " -scales X1 X2 ...: values for the multiple scales for extracting features (default: ";
// clang-format on
for (const double& i : default_scales_vector)
std::cout << i << " ";
std::cout << "\n\n";
openni_wrapper::OpenNIDriver& driver = openni_wrapper::OpenNIDriver::getInstance();
if (driver.getNumberDevices() > 0) {
for (unsigned deviceIdx = 0; deviceIdx < driver.getNumberDevices(); ++deviceIdx) {
// clang-format off
std::cout << "Device: " << deviceIdx + 1
<< ", vendor: " << driver.getVendorName (deviceIdx)
<< ", product: " << driver.getProductName (deviceIdx)
<< ", connected: " << driver.getBus (deviceIdx) << " @ " << driver.getAddress (deviceIdx) << ", serial number: \'" << driver.getSerialNumber (deviceIdx) << "\'"
<< std::endl;
// clang-format on
}
std::cout << "\ndevice_id may be:" << std::endl
<< " #1, #2, ... for the first second etc device in the list or"
<< std::endl
<< " bus@address for the device connected to a specific "
"usb-bus/address combination (works only in Linux) or"
<< " <serial-number> (only in Linux and for devices which provide "
"serial numbers)";
}
else
std::cout << "No devices connected." << std::endl;
}
int
main(int argc, char** argv)
{
std::cout << "OpenNIFeaturePersistence - show persistent features based on the "
"MultiscaleFeaturePersistence class using the FPFH features\n"
<< "Use \"-h\" to get more info about the available options.\n";
/////////////////////////////////////////////////////////////////////
if (pcl::console::find_argument(argc, argv, "-h") != -1 ||
pcl::console::find_argument(argc, argv, "--help") != -1) {
usage(argv);
return 1;
}
std::string device_id = "";
float subsampling_leaf_size = default_subsampling_leaf_size;
double normal_search_radius = default_normal_search_radius;
std::vector<double> scales_vector_double = default_scales_vector;
std::vector<float> scales_vector(scales_vector_double.size());
float alpha = default_alpha;
if (pcl::console::parse_argument(argc, argv, "-device_id", device_id) == -1 &&
argc > 1 && argv[1][0] != '-')
device_id = argv[1];
pcl::console::parse_argument(argc, argv, "-octree_leaf_size", subsampling_leaf_size);
pcl::console::parse_argument(
argc, argv, "-normal_search_radius", normal_search_radius);
pcl::console::parse_multiple_arguments(argc, argv, "-scales", scales_vector_double);
for (std::size_t i = 0; i < scales_vector_double.size(); ++i)
scales_vector[i] = float(scales_vector_double[i]);
pcl::console::parse_argument(argc, argv, "-persistence_alpha", alpha);
/////////////////////////////////////////////////////////////////////
pcl::OpenNIGrabber grabber(device_id);
if (grabber.providesCallback<pcl::OpenNIGrabber::sig_cb_openni_point_cloud_rgba>()) {
PCL_INFO("PointXYZRGBA mode enabled.\n");
OpenNIFeaturePersistence<pcl::PointXYZRGBA> v(
subsampling_leaf_size, normal_search_radius, scales_vector, alpha, device_id);
v.run();
}
else {
PCL_INFO("PointXYZ mode enabled.\n");
OpenNIFeaturePersistence<pcl::PointXYZ> v(
subsampling_leaf_size, normal_search_radius, scales_vector, alpha, device_id);
v.run();
}
return 0;
}