-
-
Notifications
You must be signed in to change notification settings - Fork 4.6k
/
Copy pathopenni_ii_normal_estimation.cpp
260 lines (229 loc) · 9.25 KB
/
openni_ii_normal_estimation.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
/*
* Software License Agreement (BSD License)
*
* Copyright (c) 2011, Willow Garage, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Willow Garage, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <pcl/common/time.h>
#include <pcl/console/parse.h>
#include <pcl/features/integral_image_normal.h>
#include <pcl/io/openni_camera/openni_driver.h>
#include <pcl/io/openni_grabber.h>
#include <pcl/visualization/cloud_viewer.h>
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <mutex>
#include <thread>
using namespace std::chrono_literals;
// clang-format off
#define FPS_CALC(_WHAT_) \
do { \
static unsigned count = 0; \
static double last = pcl::getTime(); \
double now = pcl::getTime(); \
++count; \
if (now - last >= 1.0) { \
std::cout << "Average framerate(" << _WHAT_ << "): " \
<< double(count) / double(now - last) << " Hz" << std::endl; \
count = 0; \
last = now; \
} \
} while (false)
// clang-format on
template <typename PointType>
class OpenNIIntegralImageNormalEstimation {
public:
using Cloud = pcl::PointCloud<PointType>;
using CloudPtr = typename Cloud::Ptr;
using CloudConstPtr = typename Cloud::ConstPtr;
OpenNIIntegralImageNormalEstimation(const std::string& device_id = "")
: viewer("PCL OpenNI NormalEstimation Viewer"), device_id_(device_id)
{
ne_.setNormalEstimationMethod(
pcl::IntegralImageNormalEstimation<PointType, pcl::Normal>::COVARIANCE_MATRIX);
ne_.setNormalSmoothingSize(11.0);
new_cloud_ = false;
viewer.registerKeyboardCallback(
&OpenNIIntegralImageNormalEstimation::keyboard_callback, *this);
}
void
cloud_cb(const CloudConstPtr& cloud)
{
std::lock_guard<std::mutex> lock(mtx_);
// lock while we set our cloud;
normals_.reset(new pcl::PointCloud<pcl::Normal>);
ne_.setInputCloud(cloud);
ne_.compute(*normals_);
cloud_ = cloud;
new_cloud_ = true;
}
void
viz_cb(pcl::visualization::PCLVisualizer& viz)
{
mtx_.lock();
if (!cloud_ || !normals_) {
mtx_.unlock();
return;
}
CloudConstPtr temp_cloud;
pcl::PointCloud<pcl::Normal>::Ptr temp_normals;
temp_cloud.swap(cloud_); // here we set cloud_ to null, so that
temp_normals.swap(normals_);
mtx_.unlock();
if (!viz.updatePointCloud(temp_cloud, "OpenNICloud")) {
viz.addPointCloud(temp_cloud, "OpenNICloud");
viz.resetCameraViewpoint("OpenNICloud");
}
// Render the data
if (new_cloud_) {
viz.removePointCloud("normalcloud");
viz.addPointCloudNormals<PointType, pcl::Normal>(
temp_cloud, temp_normals, 100, 0.05f, "normalcloud");
new_cloud_ = false;
}
}
void
keyboard_callback(const pcl::visualization::KeyboardEvent& event, void*)
{
std::lock_guard<std::mutex> lock(mtx_);
switch (event.getKeyCode()) {
case '1':
ne_.setNormalEstimationMethod(
pcl::IntegralImageNormalEstimation<PointType,
pcl::Normal>::COVARIANCE_MATRIX);
std::cout << "switched to COVARIANCE_MATRIX method\n";
break;
case '2':
ne_.setNormalEstimationMethod(
pcl::IntegralImageNormalEstimation<PointType,
pcl::Normal>::AVERAGE_3D_GRADIENT);
std::cout << "switched to AVERAGE_3D_GRADIENT method\n";
break;
case '3':
ne_.setNormalEstimationMethod(
pcl::IntegralImageNormalEstimation<PointType,
pcl::Normal>::AVERAGE_DEPTH_CHANGE);
std::cout << "switched to AVERAGE_DEPTH_CHANGE method\n";
break;
case '4':
ne_.setNormalEstimationMethod(
pcl::IntegralImageNormalEstimation<PointType,
pcl::Normal>::SIMPLE_3D_GRADIENT);
std::cout << "switched to SIMPLE_3D_GRADIENT method\n";
break;
}
}
void
run()
{
pcl::OpenNIGrabber interface(device_id_);
std::function<void(const CloudConstPtr&)> f = [this](const CloudConstPtr& cloud) {
cloud_cb(cloud);
};
boost::signals2::connection c = interface.registerCallback(f);
viewer.runOnVisualizationThread(
[this](pcl::visualization::PCLVisualizer& viz) { viz_cb(viz); }, "viz_cb");
interface.start();
while (!viewer.wasStopped()) {
std::this_thread::sleep_for(1s);
}
interface.stop();
}
pcl::IntegralImageNormalEstimation<PointType, pcl::Normal> ne_;
pcl::visualization::CloudViewer viewer;
std::string device_id_;
std::mutex mtx_;
// Data
pcl::PointCloud<pcl::Normal>::Ptr normals_;
CloudConstPtr cloud_;
bool new_cloud_;
};
void
usage(char** argv)
{
std::cout << "usage: " << argv[0] << " [-device_id X (default: \"#1\")]\n\n";
openni_wrapper::OpenNIDriver& driver = openni_wrapper::OpenNIDriver::getInstance();
if (driver.getNumberDevices() > 0) {
for (unsigned deviceIdx = 0; deviceIdx < driver.getNumberDevices(); ++deviceIdx) {
// clang-format off
std::cout << "Device: " << deviceIdx + 1
<< ", vendor: " << driver.getVendorName (deviceIdx)
<< ", product: " << driver.getProductName (deviceIdx)
<< ", connected: " << driver.getBus (deviceIdx) << " @ " << driver.getAddress (deviceIdx) << ", serial number: \'" << driver.getSerialNumber (deviceIdx) << "\'"
<< std::endl;
// clang-format on
}
std::cout << "\ndevice_id may be:" << std::endl
<< " #1, #2, ... for the first second etc device in the list or"
<< std::endl
<< " bus@address for the device connected to a specific "
"usb-bus/address combination (works only in Linux) or"
<< " <serial-number> (only in Linux and for devices which provide "
"serial numbers)";
}
else
std::cout << "No devices connected." << std::endl;
}
int
main(int argc, char** argv)
{
/////////////////////////////////////////////////////////////////////
if (pcl::console::find_argument(argc, argv, "-h") != -1 ||
pcl::console::find_argument(argc, argv, "--help") != -1) {
usage(argv);
return 1;
}
std::string device_id = "";
if (pcl::console::parse_argument(argc, argv, "-device_id", device_id) == -1 &&
argc > 1 && argv[1][0] != '-')
device_id = argv[1];
/////////////////////////////////////////////////////////////////////
// clang-format off
std::cout << "Press following keys to switch to the different integral image normal estimation methods:\n";
std::cout << "<1> COVARIANCE_MATRIX method\n";
std::cout << "<2> AVERAGE_3D_GRADIENT method\n";
std::cout << "<3> AVERAGE_DEPTH_CHANGE method\n";
std::cout << "<4> SIMPLE_3D_GRADIENT method\n";
std::cout << "<Q,q> quit\n\n";
// clang-format on
pcl::OpenNIGrabber grabber(device_id);
if (grabber.providesCallback<pcl::OpenNIGrabber::sig_cb_openni_point_cloud_rgba>()) {
PCL_INFO("PointXYZRGBA mode enabled.\n");
OpenNIIntegralImageNormalEstimation<pcl::PointXYZRGBA> v(device_id);
v.run();
}
else {
PCL_INFO("PointXYZ mode enabled.\n");
OpenNIIntegralImageNormalEstimation<pcl::PointXYZ> v(device_id);
v.run();
}
return 0;
}