-
-
Notifications
You must be signed in to change notification settings - Fork 4.6k
/
Copy pathstereo_ground_segmentation.cpp
executable file
·562 lines (499 loc) · 21.4 KB
/
stereo_ground_segmentation.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
/*
* Software License Agreement (BSD License)
*
* Copyright (c) 2012, Willow Garage, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Willow Garage, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <pcl/common/centroid.h> // for computeMeanAndCovarianceMatrix
#include <pcl/common/distances.h>
#include <pcl/common/intersections.h>
#include <pcl/common/pcl_filesystem.h>
#include <pcl/features/integral_image_normal.h>
#include <pcl/io/pcd_io.h>
#include <pcl/sample_consensus/sac_model_plane.h>
#include <pcl/segmentation/euclidean_cluster_comparator.h>
#include <pcl/segmentation/ground_plane_comparator.h>
#include <pcl/segmentation/organized_connected_component_segmentation.h>
#include <pcl/segmentation/organized_multi_plane_segmentation.h>
#include <pcl/segmentation/planar_region.h>
#include <pcl/stereo/stereo_matching.h>
#include <pcl/visualization/cloud_viewer.h>
#include <pcl/visualization/image_viewer.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/ModelCoefficients.h>
#include <mutex>
using PointT = pcl::PointXYZRGB;
using Cloud = pcl::PointCloud<PointT>;
using CloudPtr = Cloud::Ptr;
using CloudConstPtr = Cloud::ConstPtr;
/** \brief StereoGroundSegmentation is a demonstration application for using PCL's
* stereo tools and segmentation tools to detect smooth surfaces suitable for driving.
*
* \author Alex Trevor
*/
class HRCSSegmentation {
private:
pcl::visualization::PCLVisualizer::Ptr viewer;
pcl::visualization::ImageViewer::Ptr image_viewer;
pcl::PointCloud<PointT>::ConstPtr prev_cloud;
pcl::PointCloud<pcl::Normal>::ConstPtr prev_normal_cloud;
pcl::PointCloud<pcl::PointXYZ>::ConstPtr prev_ground_cloud;
pcl::PointCloud<PointT>::ConstPtr prev_ground_image;
pcl::PointCloud<PointT>::ConstPtr prev_label_image;
Eigen::Vector4f prev_ground_normal;
Eigen::Vector4f prev_ground_centroid;
std::mutex cloud_mutex;
pcl::IntegralImageNormalEstimation<PointT, pcl::Normal> ne;
pcl::GroundPlaneComparator<PointT, pcl::Normal>::Ptr road_comparator;
pcl::OrganizedConnectedComponentSegmentation<PointT, pcl::Label> road_segmentation;
std::vector<std::string> left_images;
std::vector<std::string> right_images;
int files_idx;
int images_idx;
pcl::AdaptiveCostSOStereoMatching stereo;
bool trigger;
bool continuous;
bool display_normals;
bool detect_obstacles;
int smooth_weak;
int smooth_strong;
public:
HRCSSegmentation(const std::vector<std::string>& left_images,
const std::vector<std::string>& right_images)
: viewer(new pcl::visualization::PCLVisualizer("3D Viewer"))
, image_viewer(new pcl::visualization::ImageViewer("Image Viewer"))
, prev_cloud(new pcl::PointCloud<PointT>)
, prev_normal_cloud(new pcl::PointCloud<pcl::Normal>)
, prev_ground_cloud(new pcl::PointCloud<pcl::PointXYZ>)
, prev_ground_image(new pcl::PointCloud<PointT>)
, prev_label_image(new pcl::PointCloud<PointT>)
, road_comparator(new pcl::GroundPlaneComparator<PointT, pcl::Normal>)
, road_segmentation(road_comparator)
{
trigger = true;
continuous = false;
display_normals = false;
detect_obstacles = false;
this->left_images = left_images;
this->right_images = right_images;
files_idx = 0;
images_idx = 0;
// Set up a 3D viewer
viewer->setBackgroundColor(0, 0, 0);
viewer->addCoordinateSystem(1.0, "global");
viewer->initCameraParameters();
viewer->registerKeyboardCallback(
&HRCSSegmentation::keyboardCallback, *this, nullptr);
// Set up the stereo matching
stereo.setMaxDisparity(60);
stereo.setXOffset(0);
stereo.setRadius(5);
smooth_weak = 20;
smooth_strong = 100;
stereo.setSmoothWeak(smooth_weak);
stereo.setSmoothStrong(smooth_strong);
stereo.setGammaC(25);
stereo.setGammaS(10);
stereo.setRatioFilter(20);
stereo.setPeakFilter(0);
stereo.setLeftRightCheck(true);
stereo.setLeftRightCheckThreshold(1);
stereo.setPreProcessing(true);
// Set up the normal estimation
ne.setNormalEstimationMethod(ne.COVARIANCE_MATRIX);
ne.setMaxDepthChangeFactor(0.03f);
ne.setNormalSmoothingSize(40.0f); // 20.0f
// Set up the groundplane comparator
// If the camera was pointing straight out, the normal would be:
Eigen::Vector3f nominal_road_normal(0.0, -1.0, 0.0);
// Adjust for camera tilt:
Eigen::Vector3f tilt_road_normal =
Eigen::AngleAxisf(pcl::deg2rad(5.0f), Eigen::Vector3f::UnitX()) *
nominal_road_normal;
road_comparator->setExpectedGroundNormal(tilt_road_normal);
road_comparator->setGroundAngularThreshold(pcl::deg2rad(10.0f));
road_comparator->setAngularThreshold(pcl::deg2rad(3.0f));
}
~HRCSSegmentation() = default;
void
cloud_cb_(const pcl::PointCloud<PointT>::ConstPtr& cloud)
{
if (!viewer->wasStopped()) {
cloud_mutex.lock();
prev_cloud = cloud;
cloud_mutex.unlock();
}
}
void
keyboardCallback(const pcl::visualization::KeyboardEvent& event, void*)
{
if (event.keyUp()) {
switch (event.getKeyCode()) {
case ' ':
trigger = true;
break;
case '1':
smooth_strong -= 10;
PCL_INFO("smooth_strong: %d\n", smooth_strong);
stereo.setSmoothStrong(smooth_strong);
break;
case '2':
smooth_strong += 10;
PCL_INFO("smooth_strong: %d\n", smooth_strong);
stereo.setSmoothStrong(smooth_strong);
break;
case '3':
smooth_weak -= 10;
PCL_INFO("smooth_weak: %d\n", smooth_weak);
stereo.setSmoothWeak(smooth_weak);
break;
case '4':
smooth_weak += 10;
PCL_INFO("smooth_weak: %d\n", smooth_weak);
stereo.setSmoothWeak(smooth_weak);
break;
case 'c':
continuous = !continuous;
break;
case 'n':
display_normals = !display_normals;
break;
case 'o':
detect_obstacles = !detect_obstacles;
break;
}
}
}
void
processStereoPair(const pcl::PointCloud<pcl::RGB>::Ptr& left_image,
const pcl::PointCloud<pcl::RGB>::Ptr& right_image,
pcl::PointCloud<pcl::PointXYZRGB>::Ptr& out_cloud)
{
stereo.compute(*left_image, *right_image);
stereo.medianFilter(4);
stereo.getPointCloud(
318.112200f, 224.334900f, 368.534700f, 0.8387445f, out_cloud, left_image);
}
void
processCloud(const pcl::PointCloud<PointT>::ConstPtr& cloud)
{
// Compute the normals
pcl::PointCloud<pcl::Normal>::Ptr normal_cloud(new pcl::PointCloud<pcl::Normal>);
ne.setInputCloud(cloud);
ne.compute(*normal_cloud);
// Set up the groundplane comparator
road_comparator->setInputCloud(cloud);
road_comparator->setInputNormals(normal_cloud);
// Run segmentation
pcl::PointCloud<pcl::Label> labels;
std::vector<pcl::PointIndices> region_indices;
road_segmentation.setInputCloud(cloud);
road_segmentation.segment(labels, region_indices);
// Draw the segmentation result
pcl::PointCloud<pcl::PointXYZ>::Ptr ground_cloud(
new pcl::PointCloud<pcl::PointXYZ>);
pcl::PointCloud<pcl::PointXYZRGB>::Ptr ground_image(
new pcl::PointCloud<pcl::PointXYZRGB>);
pcl::PointCloud<pcl::PointXYZRGB>::Ptr label_image(
new pcl::PointCloud<pcl::PointXYZRGB>);
*ground_image = *cloud;
*label_image = *cloud;
Eigen::Vector4f clust_centroid = Eigen::Vector4f::Zero();
Eigen::Vector4f vp = Eigen::Vector4f::Zero();
Eigen::Matrix3f clust_cov;
pcl::ModelCoefficients model;
model.values.resize(4);
std::vector<pcl::ModelCoefficients> model_coefficients;
std::vector<Eigen::Vector4f, Eigen::aligned_allocator<Eigen::Vector4f>> centroids;
std::vector<Eigen::Matrix3f, Eigen::aligned_allocator<Eigen::Matrix3f>> covariances;
std::vector<pcl::PointIndices> inlier_indices;
for (const auto& region_index : region_indices) {
if (region_index.indices.size() > 1000) {
for (std::size_t j = 0; j < region_index.indices.size(); j++) {
pcl::PointXYZ ground_pt((*cloud)[region_index.indices[j]].x,
(*cloud)[region_index.indices[j]].y,
(*cloud)[region_index.indices[j]].z);
ground_cloud->points.push_back(ground_pt);
(*ground_image)[region_index.indices[j]].g = static_cast<std::uint8_t>(
((*cloud)[region_index.indices[j]].g + 255) / 2);
(*label_image)[region_index.indices[j]].r = 0;
(*label_image)[region_index.indices[j]].g = 255;
(*label_image)[region_index.indices[j]].b = 0;
}
// Compute plane info
pcl::computeMeanAndCovarianceMatrix(
*cloud, region_index.indices, clust_cov, clust_centroid);
Eigen::Vector4f plane_params;
EIGEN_ALIGN16 Eigen::Vector3f::Scalar eigen_value;
EIGEN_ALIGN16 Eigen::Vector3f eigen_vector;
pcl::eigen33(clust_cov, eigen_value, eigen_vector);
plane_params[0] = eigen_vector[0];
plane_params[1] = eigen_vector[1];
plane_params[2] = eigen_vector[2];
plane_params[3] = 0;
plane_params[3] = -1 * plane_params.dot(clust_centroid);
vp -= clust_centroid;
float cos_theta = vp.dot(plane_params);
if (cos_theta < 0) {
plane_params *= -1;
plane_params[3] = 0;
plane_params[3] = -1 * plane_params.dot(clust_centroid);
}
model.values[0] = plane_params[0];
model.values[1] = plane_params[1];
model.values[2] = plane_params[2];
model.values[3] = plane_params[3];
model_coefficients.push_back(model);
inlier_indices.push_back(region_index);
centroids.push_back(clust_centroid);
covariances.push_back(clust_cov);
}
}
// Refinement
std::vector<bool> grow_labels;
std::vector<int> label_to_model;
grow_labels.resize(region_indices.size(), false);
label_to_model.resize(region_indices.size(), 0);
for (std::size_t i = 0; i < model_coefficients.size(); i++) {
int model_label = (labels)[inlier_indices[i].indices[0]].label;
label_to_model[model_label] = static_cast<int>(i);
grow_labels[model_label] = true;
}
pcl::PointCloud<pcl::Label>::Ptr labels_ptr(new pcl::PointCloud<pcl::Label>);
*labels_ptr = labels;
pcl::OrganizedMultiPlaneSegmentation<PointT, pcl::Normal, pcl::Label> mps;
pcl::PlaneRefinementComparator<PointT, pcl::Normal, pcl::Label>::Ptr
refinement_compare(
new pcl::PlaneRefinementComparator<PointT, pcl::Normal, pcl::Label>());
refinement_compare->setInputCloud(cloud);
refinement_compare->setDistanceThreshold(0.15f);
refinement_compare->setLabels(labels_ptr);
refinement_compare->setModelCoefficients(model_coefficients);
refinement_compare->setRefineLabels(grow_labels);
refinement_compare->setLabelToModel(label_to_model);
mps.setRefinementComparator(refinement_compare);
mps.setMinInliers(500);
mps.setAngularThreshold(pcl::deg2rad(3.0));
mps.setDistanceThreshold(0.02);
mps.setInputCloud(cloud);
mps.setInputNormals(normal_cloud);
mps.refine(model_coefficients, inlier_indices, labels_ptr, region_indices);
// Note the regions that have been extended
pcl::PointCloud<PointT> extended_ground_cloud;
for (const auto& region_index : region_indices) {
if (region_index.indices.size() > 1000) {
for (std::size_t j = 0; j < region_index.indices.size(); j++) {
// Check to see if it has already been labeled
if ((*ground_image)[region_index.indices[j]].g ==
(*ground_image)[region_index.indices[j]].b) {
pcl::PointXYZ ground_pt((*cloud)[region_index.indices[j]].x,
(*cloud)[region_index.indices[j]].y,
(*cloud)[region_index.indices[j]].z);
ground_cloud->points.push_back(ground_pt);
(*ground_image)[region_index.indices[j]].r = static_cast<std::uint8_t>(
((*cloud)[region_index.indices[j]].r + 255) / 2);
(*ground_image)[region_index.indices[j]].g = static_cast<std::uint8_t>(
((*cloud)[region_index.indices[j]].g + 255) / 2);
(*label_image)[region_index.indices[j]].r = 128;
(*label_image)[region_index.indices[j]].g = 128;
(*label_image)[region_index.indices[j]].b = 0;
}
}
}
}
// Segment Obstacles (Disabled by default)
Eigen::Vector4f ground_plane_params(1.0, 0.0, 0.0, 1.0);
Eigen::Vector4f ground_centroid(0.0, 0.0, 0.0, 0.0);
if (!ground_cloud->points.empty()) {
ground_centroid = centroids[0];
ground_plane_params = Eigen::Vector4f(model_coefficients[0].values[0],
model_coefficients[0].values[1],
model_coefficients[0].values[2],
model_coefficients[0].values[3]);
}
if (detect_obstacles) {
pcl::PointCloud<PointT>::CloudVectorType clusters;
if (!ground_cloud->points.empty()) {
pcl::EuclideanClusterComparator<PointT, pcl::Label>::ExcludeLabelSetPtr
plane_labels(
new pcl::EuclideanClusterComparator<PointT,
pcl::Label>::ExcludeLabelSet);
for (std::size_t i = 0; i < region_indices.size(); ++i)
if ((region_indices[i].indices.size() > mps.getMinInliers()))
plane_labels->insert(i);
pcl::EuclideanClusterComparator<PointT, pcl::Label>::Ptr
euclidean_cluster_comparator_(
new pcl::EuclideanClusterComparator<PointT, pcl::Label>());
euclidean_cluster_comparator_->setInputCloud(cloud);
euclidean_cluster_comparator_->setLabels(labels_ptr);
euclidean_cluster_comparator_->setExcludeLabels(plane_labels);
euclidean_cluster_comparator_->setDistanceThreshold(0.05f, false);
pcl::PointCloud<pcl::Label> euclidean_labels;
std::vector<pcl::PointIndices> euclidean_label_indices;
pcl::OrganizedConnectedComponentSegmentation<PointT, pcl::Label>
euclidean_segmentation(euclidean_cluster_comparator_);
euclidean_segmentation.setInputCloud(cloud);
euclidean_segmentation.segment(euclidean_labels, euclidean_label_indices);
for (const auto& euclidean_label_index : euclidean_label_indices) {
if ((euclidean_label_index.indices.size() > 200)) {
pcl::PointCloud<PointT> cluster;
pcl::copyPointCloud(*cloud, euclidean_label_index.indices, cluster);
clusters.push_back(cluster);
Eigen::Vector4f cluster_centroid;
Eigen::Matrix3f cluster_cov;
pcl::computeMeanAndCovarianceMatrix(
*cloud, euclidean_label_index.indices, cluster_cov, cluster_centroid);
pcl::PointXYZ centroid_pt(
cluster_centroid[0], cluster_centroid[1], cluster_centroid[2]);
double ptp_dist = pcl::pointToPlaneDistanceSigned(centroid_pt,
ground_plane_params[0],
ground_plane_params[1],
ground_plane_params[2],
ground_plane_params[3]);
if ((ptp_dist > 0.5) && (ptp_dist < 3.0)) {
for (std::size_t j = 0; j < euclidean_label_index.indices.size(); j++) {
(*ground_image)[euclidean_label_index.indices[j]].r = 255;
(*label_image)[euclidean_label_index.indices[j]].r = 255;
(*label_image)[euclidean_label_index.indices[j]].g = 0;
(*label_image)[euclidean_label_index.indices[j]].b = 0;
}
}
}
}
}
}
// note the NAN points in the image as well
for (std::size_t i = 0; i < cloud->size(); i++) {
if (!pcl::isFinite((*cloud)[i])) {
(*ground_image)[i].b = static_cast<std::uint8_t>(((*cloud)[i].b + 255) / 2);
(*label_image)[i].r = 0;
(*label_image)[i].g = 0;
(*label_image)[i].b = 255;
}
}
// Update info for the visualization thread
{
cloud_mutex.lock();
prev_cloud = cloud;
prev_normal_cloud = normal_cloud;
prev_ground_cloud = ground_cloud;
prev_ground_image = ground_image;
prev_label_image = label_image;
prev_ground_normal = ground_plane_params;
prev_ground_centroid = ground_centroid;
cloud_mutex.unlock();
}
}
void
run()
{
while (!viewer->wasStopped()) {
// Process a new image
if (trigger || continuous) {
pcl::PointCloud<pcl::RGB>::Ptr left_cloud(new pcl::PointCloud<pcl::RGB>);
pcl::PointCloud<pcl::RGB>::Ptr right_cloud(new pcl::PointCloud<pcl::RGB>);
pcl::PointCloud<pcl::PointXYZRGB>::Ptr out_cloud(
new pcl::PointCloud<pcl::PointXYZRGB>);
pcl::PCDReader pcd;
pcd.read(left_images[images_idx], *left_cloud);
pcd.read(right_images[images_idx], *right_cloud);
processStereoPair(left_cloud, right_cloud, out_cloud);
processCloud(out_cloud);
images_idx++;
trigger = false;
}
// Draw visualizations
if (cloud_mutex.try_lock()) {
if (!viewer->updatePointCloud(prev_ground_image, "cloud"))
viewer->addPointCloud(prev_ground_image, "cloud");
if (prev_normal_cloud->size() > 1000 && display_normals) {
viewer->removePointCloud("normals");
viewer->addPointCloudNormals<PointT, pcl::Normal>(
prev_ground_image, prev_normal_cloud, 10, 0.15f, "normals");
viewer->setPointCloudRenderingProperties(
pcl::visualization::PCL_VISUALIZER_OPACITY, 0.5, "normals");
}
if (prev_cloud->size() > 1000) {
image_viewer->addRGBImage<PointT>(prev_ground_image, "rgb_image", 0.3);
}
// Show the groundplane normal
Eigen::Vector3f nominal_road_normal(0.0, -1.0, 0.0);
// Adjust for camera tilt
Eigen::Vector3f tilt_road_normal =
Eigen::AngleAxisf(pcl::deg2rad(5.0f), Eigen::Vector3f::UnitX()) *
nominal_road_normal;
// Show the groundplane normal
pcl::PointXYZ np1(
prev_ground_centroid[0], prev_ground_centroid[1], prev_ground_centroid[2]);
pcl::PointXYZ np2(prev_ground_centroid[0] + prev_ground_normal[0],
prev_ground_centroid[1] + prev_ground_normal[1],
prev_ground_centroid[2] + prev_ground_normal[2]);
pcl::PointXYZ np3(prev_ground_centroid[0] + tilt_road_normal[0],
prev_ground_centroid[1] + tilt_road_normal[1],
prev_ground_centroid[2] + tilt_road_normal[2]);
viewer->removeShape("ground_norm");
viewer->addArrow(np2, np1, 1.0, 0, 0, false, "ground_norm");
viewer->removeShape("expected_ground_norm");
viewer->addArrow(np3, np1, 0.0, 1.0, 0, false, "expected_ground_norm");
cloud_mutex.unlock();
}
viewer->spinOnce(100);
image_viewer->spinOnce(100);
}
}
};
int
main(int argc, char** argv)
{
if (argc < 3) {
PCL_INFO("usage: pcl_stereo_ground_segmentation left_image_directory "
"right_image_directory\n");
PCL_INFO("note: images must be in PCD format. See pcl_png2pcd\n");
}
// Get list of stereo files
std::vector<std::string> left_images;
pcl_fs::directory_iterator end_itr;
for (pcl_fs::directory_iterator itr(argv[1]); itr != end_itr; ++itr) {
left_images.push_back(itr->path().string());
}
sort(left_images.begin(), left_images.end());
std::vector<std::string> right_images;
for (pcl_fs::directory_iterator itr(argv[2]); itr != end_itr; ++itr) {
right_images.push_back(itr->path().string());
}
sort(right_images.begin(), right_images.end());
PCL_INFO(
"Press space to advance to the next frame, or 'c' to enable continuous mode\n");
// Process and display
HRCSSegmentation hrcs(left_images, right_images);
hrcs.run();
return 0;
}