-
-
Notifications
You must be signed in to change notification settings - Fork 4.6k
/
Copy pathtest_convex_hull.cpp
551 lines (457 loc) · 16.9 KB
/
test_convex_hull.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2012-, Open Perception, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id: test_surface.cpp 6579 2012-07-27 18:57:32Z rusu $
*
*/
#include <pcl/test/gtest.h>
#include <random>
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/io/vtk_io.h>
#include <pcl/features/normal_3d.h>
#include <pcl/surface/convex_hull.h>
#include <pcl/common/common.h>
#include <pcl/sample_consensus/model_types.h> // for SACMODEL_PLANE
#include <pcl/filters/project_inliers.h>
using namespace pcl;
using namespace pcl::io;
PointCloud<PointXYZ>::Ptr cloud (new PointCloud<PointXYZ>);
PointCloud<PointNormal>::Ptr cloud_with_normals (new PointCloud<PointNormal>);
search::KdTree<PointXYZ>::Ptr tree;
search::KdTree<PointNormal>::Ptr tree2;
// add by ktran to test update functions
PointCloud<PointXYZ>::Ptr cloud1 (new PointCloud<PointXYZ>);
PointCloud<PointNormal>::Ptr cloud_with_normals1 (new PointCloud<PointNormal>);
search::KdTree<PointXYZ>::Ptr tree3;
search::KdTree<PointNormal>::Ptr tree4;
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
TEST (PCL, ConvexHull_bunny)
{
pcl::PointCloud<pcl::PointXYZ> hull;
std::vector<pcl::Vertices> polygons;
pcl::ConvexHull<pcl::PointXYZ> chull;
chull.setInputCloud (cloud);
chull.reconstruct (hull, polygons);
//PolygonMesh convex;
//toPCLPointCloud2 (hull, convex.cloud);
//convex.polygons = polygons;
//saveVTKFile ("./test/bun0-convex.vtk", convex);
EXPECT_EQ (polygons.size (), 206);
//check distance between min and max in the hull
Eigen::Vector4f min_pt_hull, max_pt_hull;
pcl::getMinMax3D (hull, min_pt_hull, max_pt_hull);
Eigen::Vector4f min_pt, max_pt;
pcl::getMinMax3D (hull, min_pt, max_pt);
EXPECT_NEAR ((min_pt - max_pt).norm (), (min_pt_hull - max_pt_hull).norm (), 1e-5);
//
// Test the face-vertices-only output variant
//
// construct the hull mesh
std::vector<pcl::Vertices> polygons2;
chull.reconstruct (polygons2);
// compare the face vertices (polygons2) to the output from the original test --- they should be identical
ASSERT_EQ (polygons.size (), polygons2.size ());
for (std::size_t i = 0; i < polygons.size (); ++i)
{
const pcl::Vertices & face1 = polygons[i];
const pcl::Vertices & face2 = polygons2[i];
ASSERT_EQ (face1.vertices.size (), face2.vertices.size ());
for (std::size_t j = 0; j < face1.vertices.size (); ++j)
{
ASSERT_EQ (face1.vertices[j], face2.vertices[j]);
}
}
//
// Test the PolygonMesh output variant
//
// construct the hull mesh
PolygonMesh mesh;
chull.reconstruct (mesh);
// convert the internal PCLPointCloud2 to a PointCloud
PointCloud<pcl::PointXYZ> hull2;
pcl::fromPCLPointCloud2 (mesh.cloud, hull2);
// compare the PointCloud (hull2) to the output from the original test --- they should be identical
ASSERT_EQ (hull.size (), hull2.size ());
for (std::size_t i = 0; i < hull.size (); ++i)
{
const PointXYZ & p1 = hull[i];
const PointXYZ & p2 = hull2[i];
ASSERT_EQ (p1.x, p2.x);
ASSERT_EQ (p1.y, p2.y);
ASSERT_EQ (p1.z, p2.z);
}
// compare the face vertices (mesh.polygons) to the output from the original test --- they should be identical
ASSERT_EQ (polygons.size (), mesh.polygons.size ());
for (std::size_t i = 0; i < polygons.size (); ++i)
{
const pcl::Vertices & face1 = polygons[i];
const pcl::Vertices & face2 = mesh.polygons[i];
ASSERT_EQ (face1.vertices.size (), face2.vertices.size ());
for (std::size_t j = 0; j < face1.vertices.size (); ++j)
{
ASSERT_EQ (face1.vertices[j], face2.vertices[j]);
}
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
TEST (PCL, ConvexHull_planar_bunny)
{
ConvexHull<PointXYZ> convex_hull_3d;
convex_hull_3d.setInputCloud (cloud);
PointCloud<PointXYZ> hull_3d;
convex_hull_3d.reconstruct (hull_3d);
EXPECT_EQ (convex_hull_3d.getDimension (), 3);
ModelCoefficients::Ptr plane_coefficients (new ModelCoefficients ());
plane_coefficients->values.resize (4);
plane_coefficients->values[0] = -0.010666f;
plane_coefficients->values[1] = -0.793771f;
plane_coefficients->values[2] = -0.607779f;
plane_coefficients->values[3] = 0.993252f;
/// Project segmented object points onto plane
ProjectInliers<PointXYZ> project_inliers_filter;
project_inliers_filter.setInputCloud (cloud);
project_inliers_filter.setModelType (SACMODEL_PLANE);
project_inliers_filter.setModelCoefficients (plane_coefficients);
PointCloud<PointXYZ>::Ptr cloud_projected (new PointCloud<PointXYZ> ());
project_inliers_filter.filter (*cloud_projected);
ConvexHull<PointXYZ> convex_hull_2d;
convex_hull_2d.setInputCloud (cloud_projected);
PointCloud<PointXYZ> hull_2d;
convex_hull_2d.reconstruct (hull_2d);
EXPECT_EQ (convex_hull_2d.getDimension (), 2);
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
TEST (PCL, ConvexHull_LTable)
{
//construct dataset
pcl::PointCloud<pcl::PointXYZ> cloud_out_ltable;
cloud_out_ltable.resize (100);
int npoints = 0;
for (std::size_t i = 0; i < 8; i++)
{
for (std::size_t j = 0; j <= 2; j++)
{
cloud_out_ltable[npoints].x = static_cast<float>(i) * 0.5f;
cloud_out_ltable[npoints].y = -static_cast<float>(j) * 0.5f;
cloud_out_ltable[npoints].z = 0.f;
npoints++;
}
}
for (std::size_t i = 0; i <= 2; i++)
{
for (std::size_t j = 3; j < 8; j++)
{
cloud_out_ltable[npoints].x = static_cast<float>(i) * 0.5f;
cloud_out_ltable[npoints].y = -static_cast<float>(j) * 0.5f;
cloud_out_ltable[npoints].z = 0.f;
npoints++;
}
}
// add the five points on the hull
cloud_out_ltable[npoints].x = -0.5f;
cloud_out_ltable[npoints].y = 0.5f;
cloud_out_ltable[npoints].z = 0.f;
npoints++;
cloud_out_ltable[npoints].x = 4.5f;
cloud_out_ltable[npoints].y = 0.5f;
cloud_out_ltable[npoints].z = 0.f;
npoints++;
cloud_out_ltable[npoints].x = 4.5f;
cloud_out_ltable[npoints].y = -1.0f;
cloud_out_ltable[npoints].z = 0.f;
npoints++;
cloud_out_ltable[npoints].x = 1.0f;
cloud_out_ltable[npoints].y = -4.5f;
cloud_out_ltable[npoints].z = 0.f;
npoints++;
cloud_out_ltable[npoints].x = -0.5f;
cloud_out_ltable[npoints].y = -4.5f;
cloud_out_ltable[npoints].z = 0.f;
npoints++;
cloud_out_ltable.resize (npoints);
pcl::PointCloud<pcl::PointXYZ> hull;
std::vector<pcl::Vertices> polygons;
pcl::PointCloud<pcl::PointXYZ>::ConstPtr cloudptr (new pcl::PointCloud<pcl::PointXYZ> (cloud_out_ltable));
pcl::ConvexHull<pcl::PointXYZ> chull;
chull.setInputCloud (cloudptr);
chull.reconstruct (hull, polygons);
EXPECT_EQ (polygons.size (), 1);
EXPECT_EQ (hull.size (), 5);
//
// Test the face-vertices-only output variant
//
// construct the hull mesh
std::vector<pcl::Vertices> polygons2;
chull.reconstruct (polygons2);
// compare the face vertices (polygons2) to the output from the original test --- they should be identical
ASSERT_EQ (polygons.size (), polygons2.size ());
for (std::size_t i = 0; i < polygons.size (); ++i)
{
const pcl::Vertices & face1 = polygons[i];
const pcl::Vertices & face2 = polygons2[i];
ASSERT_EQ (face1.vertices.size (), face2.vertices.size ());
for (std::size_t j = 0; j < face1.vertices.size (); ++j)
{
ASSERT_EQ (face1.vertices[j], face2.vertices[j]);
}
}
//
// Test the PolygonMesh output variant
//
// construct the hull mesh
PolygonMesh mesh;
chull.reconstruct (mesh);
// convert the internal PCLPointCloud2 to a PointCloud
PointCloud<pcl::PointXYZ> hull2;
pcl::fromPCLPointCloud2 (mesh.cloud, hull2);
// compare the PointCloud (hull2) to the output from the original test --- they should be identical
ASSERT_EQ (hull.size (), hull2.size ());
for (std::size_t i = 0; i < hull.size (); ++i)
{
const PointXYZ & p1 = hull[i];
const PointXYZ & p2 = hull2[i];
ASSERT_EQ (p1.x, p2.x);
ASSERT_EQ (p1.y, p2.y);
ASSERT_EQ (p1.z, p2.z);
}
// compare the face vertices (mesh.polygons) to the output from the original test --- they should be identical
ASSERT_EQ (polygons.size (), mesh.polygons.size ());
for (std::size_t i = 0; i < polygons.size (); ++i)
{
const pcl::Vertices & face1 = polygons[i];
const pcl::Vertices & face2 = mesh.polygons[i];
ASSERT_EQ (face1.vertices.size (), face2.vertices.size ());
for (std::size_t j = 0; j < face1.vertices.size (); ++j)
{
ASSERT_EQ (face1.vertices[j], face2.vertices[j]);
}
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
TEST (PCL, ConvexHull_2dsquare)
{
//Generate data
pcl::PointCloud<pcl::PointXYZ>::Ptr input_cloud (new pcl::PointCloud<pcl::PointXYZ> ());
input_cloud->width = 1000000;
input_cloud->height = 1;
input_cloud->points.resize (input_cloud->width * input_cloud->height);
//rng
std::mt19937 rng(12345u);
std::uniform_real_distribution<float> rd (-1.0f, 1.0f);
for (auto &point : input_cloud->points)
{
point.x = rd (rng);
point.y = rd (rng);
point.z = 1.0f;
}
//Set up for creating a hull
pcl::PointCloud<pcl::PointXYZ> hull;
pcl::ConvexHull<pcl::PointXYZ> chull;
chull.setInputCloud (input_cloud);
//chull.setDim (2); //We'll skip this, so we can check auto-detection
chull.reconstruct (hull);
//Check that input was correctly detected as 2D input
ASSERT_EQ (2, chull.getDimension ());
//Verify that all points lie within the plane we generated
//This plane has normal equal to the z-axis (parallel to the xy plane, 1m up)
Eigen::Vector4f plane_normal (0.0, 0.0, -1.0, 1.0);
//Make sure they're actually near some edge
std::vector<Eigen::Vector4f, Eigen::aligned_allocator<Eigen::Vector4f> > facets;
facets.emplace_back(-1.0, 0.0, 0.0, 1.0);
facets.emplace_back(-1.0, 0.0, 0.0, -1.0);
facets.emplace_back(0.0, -1.0, 0.0, 1.0);
facets.emplace_back(0.0, -1.0, 0.0, -1.0);
//Make sure they're in the plane
for (const auto &point : hull.points)
{
float dist = std::abs (point.getVector4fMap ().dot (plane_normal));
EXPECT_NEAR (dist, 0.0, 1e-2);
float min_dist = std::numeric_limits<float>::infinity ();
for (const auto &facet : facets)
{
float d2 = std::abs (point.getVector4fMap ().dot (facet));
if (d2 < min_dist)
min_dist = d2;
}
EXPECT_NEAR (min_dist, 0.0, 1e-2);
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
TEST (PCL, ConvexHull_3dcube)
{
//Generate data
pcl::PointCloud<pcl::PointXYZ>::Ptr input_cloud (new pcl::PointCloud<pcl::PointXYZ> ());
input_cloud->width = 10000000;
input_cloud->height = 1;
input_cloud->points.resize (input_cloud->width * input_cloud->height);
//rd
std::mt19937 gen(12345u);
std::uniform_real_distribution<float> rd (-1.0f, 1.0f);
for (auto &point : input_cloud->points)
{
point.x = rd (gen);
point.y = rd (gen);
point.z = rd (gen);
}
//Set up for creating a hull
pcl::PointCloud<pcl::PointXYZ> hull;
pcl::ConvexHull<pcl::PointXYZ> chull;
chull.setInputCloud (input_cloud);
//chull.setDim (3); //We'll skip this, so we can check auto-detection
chull.reconstruct (hull);
//Check that input was correctly detected as 3D input
ASSERT_EQ (3, chull.getDimension ());
//Make sure they're actually near some edge
std::vector<Eigen::Vector4f, Eigen::aligned_allocator<Eigen::Vector4f> > facets;
facets.emplace_back(-1.0f, 0.0f, 0.0f, 1.0f);
facets.emplace_back(-1.0f, 0.0f, 0.0f, -1.0f);
facets.emplace_back(0.0f, -1.0f, 0.0f, 1.0f);
facets.emplace_back(0.0f, -1.0f, 0.0f, -1.0f);
facets.emplace_back(0.0f, 0.0f, -1.0f, 1.0f);
facets.emplace_back(0.0f, 0.0f, -1.0f, -1.0f);
//Make sure they're near a facet
for (const auto &point : hull.points)
{
float min_dist = std::numeric_limits<float>::infinity ();
for (const auto &facet : facets)
{
float dist = std::abs (point.getVector4fMap ().dot (facet));
if (dist < min_dist)
min_dist = dist;
}
EXPECT_NEAR (min_dist, 0.0, 1e-2);
}
}
TEST (PCL, ConvexHull_4points)
{
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_4 (new pcl::PointCloud<pcl::PointXYZ> ());
pcl::PointXYZ p;
p.x = p.y = p.z = 0.f;
cloud_4->push_back (p);
p.x = 1.f;
p.y = 0.f;
p.z = 0.f;
cloud_4->push_back (p);
p.x = 0.f;
p.y = 1.f;
p.z = 0.f;
cloud_4->push_back (p);
p.x = 1.f;
p.y = 1.f;
p.z = 0.f;
cloud_4->push_back (p);
cloud_4->height = 1;
cloud_4->width = cloud_4->size ();
ConvexHull<PointXYZ> convex_hull;
convex_hull.setComputeAreaVolume (true);
convex_hull.setInputCloud (cloud_4);
PolygonMesh mesh;
convex_hull.reconstruct (mesh);
EXPECT_EQ (mesh.polygons.size (), 1);
/// TODO this should be 4, not 5 as it is now - fix that!!!
EXPECT_EQ (mesh.polygons[0].vertices.size (), 4);
PointCloud<PointXYZ> mesh_cloud;
fromPCLPointCloud2 (mesh.cloud, mesh_cloud);
EXPECT_NEAR (mesh_cloud[0].x, 0.f, 1e-6);
EXPECT_NEAR (mesh_cloud[0].y, 1.f, 1e-6);
EXPECT_NEAR (mesh_cloud[0].z, 0.f, 1e-6);
EXPECT_NEAR (mesh_cloud[1].x, 1.f, 1e-6);
EXPECT_NEAR (mesh_cloud[1].y, 1.f, 1e-6);
EXPECT_NEAR (mesh_cloud[1].z, 0.f, 1e-6);
EXPECT_NEAR (mesh_cloud[2].x, 1.f, 1e-6);
EXPECT_NEAR (mesh_cloud[2].y, 0.f, 1e-6);
EXPECT_NEAR (mesh_cloud[2].z, 0.f, 1e-6);
EXPECT_NEAR (mesh_cloud[3].x, 0.f, 1e-6);
EXPECT_NEAR (mesh_cloud[3].y, 0.f, 1e-6);
EXPECT_NEAR (mesh_cloud[3].z, 0.f, 1e-6);
EXPECT_NEAR (convex_hull.getTotalArea (), 1.0f, 1e-6);
}
/* ---[ */
int
main (int argc, char** argv)
{
if (argc < 2)
{
std::cerr << "No test file given. Please download `bun0.pcd` and pass its path to the test." << std::endl;
return (-1);
}
// Load file
pcl::PCLPointCloud2 cloud_blob;
loadPCDFile (argv[1], cloud_blob);
fromPCLPointCloud2 (cloud_blob, *cloud);
// Create search tree
tree.reset (new search::KdTree<PointXYZ> (false));
tree->setInputCloud (cloud);
// Normal estimation
NormalEstimation<PointXYZ, Normal> n;
PointCloud<Normal>::Ptr normals (new PointCloud<Normal> ());
n.setInputCloud (cloud);
//n.setIndices (indices[B);
n.setSearchMethod (tree);
n.setKSearch (20);
n.compute (*normals);
// Concatenate XYZ and normal information
pcl::concatenateFields (*cloud, *normals, *cloud_with_normals);
// Create search tree
tree2.reset (new search::KdTree<PointNormal>);
tree2->setInputCloud (cloud_with_normals);
// Process for update cloud
if (argc == 3)
{
pcl::PCLPointCloud2 cloud_blob1;
loadPCDFile (argv[2], cloud_blob1);
fromPCLPointCloud2 (cloud_blob1, *cloud1);
// Create search tree
tree3.reset (new search::KdTree<PointXYZ> (false));
tree3->setInputCloud (cloud1);
// Normal estimation
NormalEstimation<PointXYZ, Normal> n1;
PointCloud<Normal>::Ptr normals1 (new PointCloud<Normal> ());
n1.setInputCloud (cloud1);
n1.setSearchMethod (tree3);
n1.setKSearch (20);
n1.compute (*normals1);
// Concatenate XYZ and normal information
pcl::concatenateFields (*cloud1, *normals1, *cloud_with_normals1);
// Create search tree
tree4.reset (new search::KdTree<PointNormal>);
tree4->setInputCloud (cloud_with_normals1);
}
// Testing
testing::InitGoogleTest (&argc, argv);
return (RUN_ALL_TESTS ());
}
/* ]--- */