-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathpelicular times.cpp
99 lines (86 loc) · 2.05 KB
/
pelicular times.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#include <vector>
#include <fstream>
#include <iostream>
using namespace std;
#define MAX_N 100005
#define MAX_L 20
#define foreach(V) for(typeof (V).begin() it = (V).begin(); it != (V).end(); ++it)
int K, N, M;
int L[MAX_N << 1], H[MAX_N << 1],Lg[MAX_N << 1], First[MAX_N];
int Rmq[MAX_L][MAX_N << 2];
int u[MAX_N];
vector <int> G[MAX_N];
void dfs(int nod, int lev)
{
H[++K] = nod; //nodul actual este adaugat in reprezentarea Euler a arborelui
L[K] = lev; //se retine nivelul fiecarei pozitii din reprezentarea Euler a arborelui
First[nod] = K; //se retine si prima aparitie a fiecarui nod in reprezentarea Euler a arborelui
u[nod]=1;
foreach(G[nod])
{
if(u[*it]==0)
{
dfs(*it, lev+1);
H[++K] = nod;
L[K] = lev;
}
}
}
void rmq()
{
for(int i = 2; i <= K; ++i)
Lg[i] = Lg[i >> 1] + 1;
for(int i = 1; i <= K; ++i)
Rmq[0][i] = i;
for(int i = 1; (1 << i) < K; ++i)
for(int j = 1; j <= K - (1 << i); ++j)
{int l = 1 << (i - 1);Rmq[i][j] = Rmq[i-1][j];if(L[Rmq[i-1][j + l]] < L[Rmq[i][j]])
Rmq[i][j] = Rmq[i-1][j + l];
}
}
int lca(int x, int y)
{
int diff, l, sol, sh;
int a = First[x], b = First[y];
if(a > b) swap(a, b);
diff = b - a + 1;
l = Lg[diff];
sol = Rmq[l][a];
sh = diff - (1 << l);
if(L[sol] > L[Rmq[l][a + sh]])
sol = Rmq[l][a + sh];
//if(sol==0) return -1;
return H[sol];
}
int main()
{
cin >> N >> M;
for(int i = 2; i <= N; ++i)
{
int x,y;
cin >> x>>y;
G[x].push_back(y);
G[y].push_back(x);
}
dfs(1, 0);
rmq();
while(M--)
{
int x, y, tip;
cin>>tip;
if(tip==1)
{
for(int i=0;i<=N;++i) u[i]=0;
K=0;
cin>>x;dfs(x, 0);
rmq();
}
else
{
cin >> x >> y;int rez=lca(x, y);
if(rez == x || rez == y) cout<<"-1"<<'\n';
else cout << lca(x, y) << "\n";
}
}
return 0;
}