-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathneural_network.rs
389 lines (332 loc) · 12.4 KB
/
neural_network.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
use self::{
ann::ArtificialNeuralNetworkBuilder, arrayfire_mnist::ArrayfireNormalizedMnist, model::Model,
};
use arrayfire::Array;
use mnist::MnistBuilder;
pub(crate) mod arrayfire_mnist {
use arrayfire::{dim4, transpose, Array};
use mnist::NormalizedMnist;
pub const TRAINING_SET_SIZE: u32 = 6_000;
pub const VALIDATION_SET_SIZE: u32 = 1_000;
pub const TEST_SET_SIZE: u32 = 1_000;
pub const IMAGE_DIMENSION: usize = 28;
pub struct ArrayfireNormalizedMnist {
pub training_labels: Array<u8>,
pub training_images: Array<f32>,
pub validation_labels: Array<u8>,
pub validation_images: Array<f32>,
pub testing_labels: Array<u8>,
pub testing_images: Array<f32>,
}
impl From<&NormalizedMnist> for ArrayfireNormalizedMnist {
fn from(mnist_data: &NormalizedMnist) -> Self {
let training_images = Array::new(
&mnist_data.trn_img,
dim4![
(IMAGE_DIMENSION * IMAGE_DIMENSION) as u64,
TRAINING_SET_SIZE as u64,
1,
1
],
);
let training_labels = Array::new(
&mnist_data.trn_lbl,
dim4![10, TRAINING_SET_SIZE as u64, 1, 1],
);
let testing_images = Array::new(
&mnist_data.tst_img,
dim4![
(IMAGE_DIMENSION * IMAGE_DIMENSION) as u64,
TEST_SET_SIZE as u64,
1,
1
],
);
let testing_labels =
Array::new(&mnist_data.tst_lbl, dim4![10, TEST_SET_SIZE as u64, 1, 1]);
let validation_images = Array::new(
&mnist_data.val_img,
dim4![
(IMAGE_DIMENSION * IMAGE_DIMENSION) as u64,
VALIDATION_SET_SIZE as u64,
1,
1
],
);
let validation_labels = Array::new(
&mnist_data.val_lbl,
dim4![10, VALIDATION_SET_SIZE as u64, 1, 1],
);
ArrayfireNormalizedMnist {
training_labels: transpose(&training_labels, false),
training_images: transpose(&training_images, false),
validation_labels: transpose(&validation_labels, false),
validation_images: transpose(&validation_images, false),
testing_labels: transpose(&testing_labels, false),
testing_images: transpose(&testing_images, false),
}
}
}
}
pub(crate) mod model {
use arrayfire::Array;
pub trait Model {
fn predict(&self, feature: &Array<f32>) -> Array<f32>;
fn train(
&mut self,
training_features: &Array<f32>,
training_labels: &Array<u8>,
validation_features: &Array<f32>,
validation_labels: &Array<u8>,
learning_rate_alpha: f64,
max_epochs: i32,
batch_size: i32,
max_err: f64,
) -> f64;
}
}
mod ann {
use super::model::Model;
use arrayfire::{
constant, dim4, index, join, matmul, seq, sigmoid, sum_all, transpose, Array, MatProp,
};
pub struct ArtificialNeuralNetwork {
weights: Vec<Array<f32>>,
num_layers: usize,
}
pub struct ArtificialNeuralNetworkBuilder {
feature_width: usize,
layer_widths: Vec<usize>,
label_width: usize,
initial_random_range: f32,
num_layers: usize,
}
impl ArtificialNeuralNetworkBuilder {
pub fn new() -> ArtificialNeuralNetworkBuilder {
ArtificialNeuralNetworkBuilder {
feature_width: 0,
label_width: 0,
num_layers: 2,
layer_widths: vec![],
initial_random_range: 0.05,
}
}
pub fn with_feature_width(
&mut self,
feature_width: usize,
) -> &mut ArtificialNeuralNetworkBuilder {
self.feature_width = feature_width;
self
}
pub fn with_label_width(
&mut self,
label_width: usize,
) -> &mut ArtificialNeuralNetworkBuilder {
self.label_width = label_width;
self
}
pub fn add_hidden_layer(
&mut self,
layer_width: usize,
) -> &mut ArtificialNeuralNetworkBuilder {
self.layer_widths.push(layer_width);
self.num_layers += 1;
self
}
pub fn with_initial_random_range(
&mut self,
range: f32,
) -> &mut ArtificialNeuralNetworkBuilder {
self.initial_random_range = range;
self
}
pub fn build(&self) -> ArtificialNeuralNetwork {
let mut widths: Vec<usize> = vec![];
widths.push(self.feature_width);
widths.append(&mut self.layer_widths.clone());
widths.push(self.label_width);
let mut weights = vec![];
for index in 0..(widths.len() - 1) {
weights.push(
self.initial_random_range
* arrayfire::randu::<f32>(dim4![
widths[index] as u64 + 1,
widths[index + 1] as u64,
1,
1
])
- self.initial_random_range / 2f32,
)
}
ArtificialNeuralNetwork {
weights,
num_layers: self.num_layers,
}
}
}
impl Model for ArtificialNeuralNetwork {
fn train(
&mut self,
training_features: &Array<f32>,
training_labels: &Array<u8>,
validation_features: &Array<f32>,
validation_labels: &Array<u8>,
learning_rate_alpha: f64,
max_epochs: i32,
batch_size: i32,
max_err: f64,
) -> f64 {
let number_of_training_samples = training_features.dims()[0] as i32;
let number_of_batches_in_training_set = number_of_training_samples / batch_size;
let validation_batch_size = 1;
let _number_of_validation_samples = validation_features.dims()[0] as i32;
let number_of_batches_in_validation_set = 1; //number_of_validation_samples / validation_batch_size;
let mut avg_error = 0f64;
for epoch in 0..max_epochs {
let mut errors = Vec::with_capacity(number_of_batches_in_validation_set as usize);
for training_batch in 0..number_of_batches_in_training_set {
let start = training_batch * batch_size;
let end = start + batch_size - 1;
let features = index(training_features, &[seq![start, end, 1], seq!()]);
let labels = index(training_labels, &[seq![start, end, 1], seq!()]);
let signals = self.forward_propagate(&features);
self.back_propagate(&signals, &labels, learning_rate_alpha);
}
for validation_batch in 0..number_of_batches_in_validation_set {
let start = validation_batch * validation_batch_size;
let end = start + validation_batch_size - 1;
let prediction =
self.predict(&index(validation_features, &[seq![start, end, 1], seq!()]));
let target = &index(validation_labels, &[seq![start, end, 1], seq!()]);
errors.push(Self::error(&prediction, target));
}
avg_error = errors.clone().into_iter().sum::<f64>()
/ (number_of_batches_in_validation_set) as f64;
if avg_error < max_err {
println!("Converged on Epoch: {}", epoch + 1);
return avg_error;
}
if (epoch + 1) % 10 == 0 {
println!("Epoch: {}, Error: {}", epoch + 1, avg_error);
}
}
avg_error
}
fn predict(&self, input: &Array<f32>) -> Array<f32> {
let signal = self.forward_propagate(input);
signal.last().unwrap().copy()
}
}
impl ArtificialNeuralNetwork {
fn forward_propagate(&self, input: &Array<f32>) -> Vec<Array<f32>> {
//first layer is the input
let mut signal = Vec::with_capacity(self.num_layers);
signal.push(input.copy());
for layer_index in 0..(self.num_layers - 1) {
let signal_with_bias: Array<f32> = Self::add_bias(&signal[layer_index]);
let output = matmul(
&signal_with_bias,
&self.weights[layer_index],
MatProp::NONE,
MatProp::NONE,
);
signal.push(sigmoid(&output));
}
signal
}
fn add_bias(array: &Array<f32>) -> Array<f32> {
join(
1,
&constant::<f32>(1f32, dim4![array.dims()[0], 1, 1, 1]),
array,
)
}
fn deriv(out: &Array<f32>) -> Array<f32> {
out * (1 - out)
}
fn back_propagate(
&mut self,
signals: &Vec<Array<f32>>,
labels: &Array<u8>,
learning_rate_alpha: f64,
) {
let mut output = signals.last().unwrap();
let mut error = output - labels;
let m = labels.dims()[0] as i32;
for layer_index in (0..self.num_layers - 1).rev() {
let signal = Self::add_bias(&signals[layer_index]);
let delta = transpose(&(Self::deriv(output) * error), false);
let tg =
learning_rate_alpha * matmul(&delta, &signal, MatProp::NONE, MatProp::NONE);
let gradient = -(tg) / m;
self.weights[layer_index] += transpose(&gradient, false);
output = &signals[layer_index];
let err = &matmul(
&transpose(&delta, false),
&transpose(&self.weights[layer_index], false),
MatProp::NONE,
MatProp::NONE,
);
error = index(err, &[seq!(), seq!(1, output.dims()[1] as i32, 1)]);
}
}
fn error(prediction: &Array<f32>, target: &Array<u8>) -> f64 {
let dif = (prediction - target) * 1f64;
let sum = sum_all(&(&dif * &dif)).0;
sum.sqrt()
}
}
}
fn accuracy(predicted: &Array<f32>, target: &Array<f32>) -> f32 {
let (_target_maximums, target_max_indices) = arrayfire::imax(target, 1);
let (_predicted_maximums, predicted_max_indices) = arrayfire::imax(predicted, 1);
let (matches, _) = arrayfire::count_all(&arrayfire::eq(
&target_max_indices,
&predicted_max_indices,
false,
));
100f32 * matches as f32 / target_max_indices.elements() as f32
}
fn main() {
arrayfire::info();
println!("** ArrayFire-Rust ANN Demo **\n");
let mnist = MnistBuilder::new()
.label_format_one_hot()
.training_set_length(50_000)
.validation_set_length(10_000)
.test_set_length(10_000)
.download_and_extract()
.finalize()
.normalize();
let mnist = ArrayfireNormalizedMnist::from(&mnist);
let mut model = ArtificialNeuralNetworkBuilder::new()
.with_feature_width(28 * 28)
.with_label_width(10)
.add_hidden_layer(100)
.add_hidden_layer(50)
.with_initial_random_range(0.05f32)
.build();
model.train(
&mnist.training_images,
&mnist.training_labels,
&mnist.validation_images,
&mnist.validation_labels,
2.0,
250,
100,
0.05,
);
let train_output = model.predict(&mnist.training_images);
let test_output = model.predict(&mnist.testing_images);
arrayfire::sync(arrayfire::get_device());
println!("\nTraining set:");
println!(
"Accuracy on training data: {}",
accuracy(&train_output, &(mnist.training_labels * 1f32)),
);
println!("\nTest set:");
println!(
"Accuracy on testing data: {}",
accuracy(&test_output, &(mnist.testing_labels * 1f32)),
);
}