-
-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathlive_contour_det.py
137 lines (109 loc) · 4.88 KB
/
live_contour_det.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# importing libraries
import cv2
import numpy as np
# initialize camera settings
frameWidth = 640
frameHeight = 480
cap = cv2.VideoCapture(0)
cap.set(3, frameWidth)
cap.set(4, frameHeight)
def empty(a):
pass
# name of the window
cv2.namedWindow("Parameters")
# resize the window
cv2.resizeWindow("Parameters", 640, 240)
# creating trackbars
cv2.createTrackbar("Threshold1", "Parameters", 23, 255, empty)
cv2.createTrackbar("Threshold2", "Parameters", 20, 255, empty)
cv2.createTrackbar("Area", "Parameters", 5000, 30000, empty)
# function for stacking images together
def stackImages(scale, imgArray):
rows = len(imgArray)
cols = len(imgArray[0])
rowsAvailable = isinstance(imgArray[0], list)
width = imgArray[0][0].shape[1]
height = imgArray[0][0].shape[0]
if rowsAvailable:
for x in range(0, rows):
for y in range(0, cols):
if imgArray[x][y].shape[:2] == imgArray[0][0].shape[:2]:
imgArray[x][y] = cv2.resize(
imgArray[x][y], (0, 0), None, scale, scale)
else:
imgArray[x][y] = cv2.resize(
imgArray[x][y], (imgArray[0][0].shape[1], imgArray[0][0].shape[0]), None, scale, scale)
if len(imgArray[x][y].shape) == 2:
imgArray[x][y] = cv2.cvtColor(
imgArray[x][y], cv2.COLOR_GRAY2BGR)
imageBlank = np.zeros((height, width, 3), np.uint8)
hor = [imageBlank]*rows
hor_con = [imageBlank]*rows
for x in range(0, rows):
hor[x] = np.hstack(imgArray[x])
ver = np.vstack(hor)
else:
for x in range(0, rows):
if imgArray[x].shape[:2] == imgArray[0].shape[:2]:
imgArray[x] = cv2.resize(
imgArray[x], (0, 0), None, scale, scale)
else:
imgArray[x] = cv2.resize(
imgArray[x], (imgArray[0].shape[1], imgArray[0].shape[0]), None, scale, scale)
if len(imgArray[x].shape) == 2:
imgArray[x] = cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR)
hor = np.hstack(imgArray)
ver = hor
return ver
def getContours(img, imgContour):
contours, hierarchy = cv2.findContours(
img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
# detect the area of each contour and based on the area we can remove all the contours that we are not interested in
# so in order to do that we will need a for loop
for cnt in contours:
area = cv2.contourArea(cnt)
areaMin = cv2.getTrackbarPos("Area", "Parameters")
if area > areaMin:
cv2.drawContours(imgContour, cnt, -1, (255, 0, 255), 7)
# find the corner points, so in order to do that we need to first find the length of contours
# true basically means that the contour is closed
peri = cv2.arcLength(cnt, True)
# to approximate what type of shape this is, we will use the approximation of poly method
# we will input the contour, will give it a resolution and then we will define again that this is a closed contour
approx = cv2.approxPolyDP(cnt, 0.02 * peri, True)
print(len(approx))
# create a bounding box because we need to highlight the area of where the object is
x, y, w, h = cv2.boundingRect(approx)
cv2.rectangle(imgContour, (x, y), (x + w, y + h), (0, 255, 0), 5)
# to display values so that we can easily see the number of points and the area detected
cv2.putText(imgContour, "Points: " + str(len(approx)), (x +
w + 20, y + 20), cv2.FONT_HERSHEY_COMPLEX, .7, (0, 255, 0), 2)
cv2.putText(imgContour, "Area: " + str(int(area)), (x + w +
20, y + 45), cv2.FONT_HERSHEY_COMPLEX, 0.7, (0, 255, 0), 2)
# reading each frame
while True:
success, img = cap.read()
imgContour = img.copy()
# converting img into blur version
imgBlur = cv2.GaussianBlur(img, (7, 7), 1)
# converting it into gray scale
imgGray = cv2.cvtColor(imgBlur, cv2.COLOR_BGR2GRAY)
# define trackbar positions
threshold1 = cv2.getTrackbarPos("Threshold1", "Parameters")
threshold2 = cv2.getTrackbarPos("Threshold2", "Parameters")
# canny edge detector
imgCanny = cv2.Canny(imgGray, threshold1, threshold2)
# define kernel for dilation
kernel = np.ones((5, 5))
# to overcome the overlaps and noise, we use dilation function
imgDil = cv2.dilate(imgCanny, kernel, iterations=1)
getContours(imgDil, imgContour)
# stacking images together as we want images side by side instead of different window
imgStack = stackImages(0.8, ([img, imgCanny],
[imgDil, imgContour]))
# displaying it
cv2.imshow("Result", imgStack)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()