|
| 1 | +/*https://leetcode.com/problems/minimum-falling-path-sum/submissions/ |
| 2 | + * |
| 3 | + */ |
| 4 | +// minimum hai bhai |
| 5 | +private class recursion { |
| 6 | + |
| 7 | + public int minFallingPathSum(int[][] matrix) { |
| 8 | + int n = matrix.length; |
| 9 | + int m = matrix[0].length; |
| 10 | + |
| 11 | + int ans = Integer.MAX_VALUE; |
| 12 | + |
| 13 | + for (int j = 0; j < m; j++) { |
| 14 | + ans = Math.min(ans, recur(n - 1, j, matrix)); |
| 15 | + } |
| 16 | + return ans; |
| 17 | + } |
| 18 | + |
| 19 | + private int recur(int i, int j, int[][] matrix) { |
| 20 | + // out of bound errors |
| 21 | + if (j < 0 || j >= matrix[0].length) return Integer.MAX_VALUE; |
| 22 | + // if reawched the first row, then only |
| 23 | + if (i == 0) return matrix[0][j]; |
| 24 | + |
| 25 | + int up = recur(i - 1, j, matrix); |
| 26 | + int leftdiagonal = recur(i - 1, j - 1, matrix); |
| 27 | + int rightdiagonal = recur(i - 1, j + 1, matrix); |
| 28 | + return matrix[i][j] + Math.min(up, Math.min(leftdiagonal, rightdiagonal)); |
| 29 | + } |
| 30 | +} |
| 31 | + |
| 32 | +private class memoisation { |
| 33 | + int dp[][]; |
| 34 | + |
| 35 | + public int minFallingPathSum(int[][] matrix) { |
| 36 | + int n = matrix.length; |
| 37 | + int m = matrix[0].length; |
| 38 | + dp = new int[n][m]; |
| 39 | + int ans = Integer.MAX_VALUE; |
| 40 | + // fill dp with min value |
| 41 | + for (int a[] : dp) { |
| 42 | + Arrays.fill(a, Integer.MAX_VALUE); |
| 43 | + } |
| 44 | + |
| 45 | + for (int j = 0; j < m; j++) { |
| 46 | + ans = Math.min(ans, recur(n - 1, j, matrix)); |
| 47 | + } |
| 48 | + return ans; |
| 49 | + } |
| 50 | + |
| 51 | + private int recur(int i, int j, int[][] matrix) { |
| 52 | + // out of bound errors |
| 53 | + if (j < 0 || j >= matrix[0].length) return Integer.MAX_VALUE; |
| 54 | + // if reawched the first row, then only |
| 55 | + if (i == 0) return matrix[0][j]; |
| 56 | + if (dp[i][j] != Integer.MAX_VALUE) return dp[i][j]; |
| 57 | + |
| 58 | + int up = recur(i - 1, j, matrix); |
| 59 | + int leftdiagonal = recur(i - 1, j - 1, matrix); |
| 60 | + int rightdiagonal = recur(i - 1, j + 1, matrix); |
| 61 | + return ( |
| 62 | + dp[i][j] = |
| 63 | + matrix[i][j] + Math.min(up, Math.min(leftdiagonal, rightdiagonal)) |
| 64 | + ); |
| 65 | + } |
| 66 | +} |
| 67 | + |
| 68 | +private class tabulation { |
| 69 | + int dp[][]; |
| 70 | + |
| 71 | + public int minFallingPathSum(int[][] matrix) { |
| 72 | + int n = matrix.length; |
| 73 | + int m = matrix[0].length; |
| 74 | + dp = new int[n][m]; |
| 75 | + int ans = Integer.MAX_VALUE; |
| 76 | + // fill dp with min value |
| 77 | + for (int a[] : dp) { |
| 78 | + Arrays.fill(a, Integer.MAX_VALUE); |
| 79 | + } |
| 80 | + |
| 81 | + // filling the first array |
| 82 | + for (int i = 0; i < m; i++) { |
| 83 | + dp[0][i] = matrix[0][i]; |
| 84 | + } |
| 85 | + |
| 86 | + for (int i = 1; i < n; i++) { |
| 87 | + for (int col = 0; col < m; col++) { |
| 88 | + // check out of boound and go |
| 89 | + dp[i][col] = matrix[i][col]; |
| 90 | + |
| 91 | + int up = dp[i - 1][col]; |
| 92 | + int leftdiag = dp[i - 1][Math.max(0, col - 1)]; |
| 93 | + int rightdiag = dp[i - 1][Math.min(m - 1, col + 1)]; |
| 94 | + |
| 95 | + // minimum from the rest of moves |
| 96 | + dp[i][col] += Math.min(up, Math.min(leftdiag, rightdiag)); |
| 97 | + } |
| 98 | + } |
| 99 | + |
| 100 | + // return the minimum value from the end |
| 101 | + for (int j = 0; j < m; j++) { |
| 102 | + ans = Math.min(ans, dp[n - 1][j]); |
| 103 | + } |
| 104 | + return ans; |
| 105 | + } |
| 106 | + |
| 107 | + private int recur(int i, int j, int[][] matrix) { |
| 108 | + // out of bound errors |
| 109 | + if (j < 0 || j >= matrix[0].length) return Integer.MAX_VALUE; |
| 110 | + // if reawched the first row, then only |
| 111 | + if (i == 0) return matrix[0][j]; |
| 112 | + if (dp[i][j] != Integer.MAX_VALUE) return dp[i][j]; |
| 113 | + |
| 114 | + int up = recur(i - 1, j, matrix); |
| 115 | + int leftdiagonal = recur(i - 1, j - 1, matrix); |
| 116 | + int rightdiagonal = recur(i - 1, j + 1, matrix); |
| 117 | + return ( |
| 118 | + dp[i][j] = |
| 119 | + matrix[i][j] + Math.min(up, Math.min(leftdiagonal, rightdiagonal)) |
| 120 | + ); |
| 121 | + } |
| 122 | +} |
0 commit comments