Skip to content

Commit 5e06d41

Browse files
authored
Comments buggy codes
No offense, but how can this be merged?
1 parent 8586cf6 commit 5e06d41

File tree

1 file changed

+74
-74
lines changed

1 file changed

+74
-74
lines changed
+74-74
Original file line numberDiff line numberDiff line change
@@ -1,79 +1,79 @@
1-
#author-slayking1965
2-
"""
3-
https://projecteuler.net/problem=10
4-
Problem Statement:
5-
The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17.
6-
Find the sum of all the primes below two million using Sieve_of_Eratosthenes:
7-
The sieve of Eratosthenes is one of the most efficient ways to find all primes
8-
smaller than n when n is smaller than 10 million. Only for positive numbers.
9-
Find the sum of all the primes below two million.
10-
"""
1+
##author-slayking1965
2+
#"""
3+
#https://projecteuler.net/problem=10
4+
#Problem Statement:
5+
#The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17.
6+
#Find the sum of all the primes below two million using Sieve_of_Eratosthenes:
7+
#The sieve of Eratosthenes is one of the most efficient ways to find all primes
8+
#smaller than n when n is smaller than 10 million. Only for positive numbers.
9+
#Find the sum of all the primes below two million.
10+
#"""
1111

1212

13-
def prime_sum(n: int) -> int:
14-
"""Returns the sum of all the primes below n.
15-
def solution(n: int = 2000000) -> int:
16-
"""Returns the sum of all the primes below n using Sieve of Eratosthenes:
17-
https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
18-
The sieve of Eratosthenes is one of the most efficient ways to find all primes
19-
smaller than n when n is smaller than 10 million. Only for positive numbers.
20-
>>> prime_sum(2_000_000)
21-
>>> solution(2_000_000)
22-
142913828922
23-
>>> prime_sum(1_000)
24-
>>> solution(1_000)
25-
76127
26-
>>> prime_sum(5_000)
27-
>>> solution(5_000)
28-
1548136
29-
>>> prime_sum(10_000)
30-
>>> solution(10_000)
31-
5736396
32-
>>> prime_sum(7)
33-
>>> solution(7)
34-
10
35-
>>> prime_sum(7.1) # doctest: +ELLIPSIS
36-
>>> solution(7.1) # doctest: +ELLIPSIS
37-
Traceback (most recent call last):
38-
...
39-
TypeError: 'float' object cannot be interpreted as an integer
40-
>>> prime_sum(-7) # doctest: +ELLIPSIS
41-
>>> solution(-7) # doctest: +ELLIPSIS
42-
Traceback (most recent call last):
43-
...
44-
IndexError: list assignment index out of range
45-
>>> prime_sum("seven") # doctest: +ELLIPSIS
46-
>>> solution("seven") # doctest: +ELLIPSIS
47-
Traceback (most recent call last):
48-
...
49-
TypeError: can only concatenate str (not "int") to str
50-
"""
51-
list_ = [0 for i in range(n + 1)]
52-
list_[0] = 1
53-
list_[1] = 1
54-
primality_list = [0 for i in range(n + 1)]
55-
primality_list[0] = 1
56-
primality_list[1] = 1
13+
#def prime_sum(n: int) -> int:
14+
# """Returns the sum of all the primes below n.
15+
#def solution(n: int = 2000000) -> int:
16+
# """Returns the sum of all the primes below n using Sieve of Eratosthenes:
17+
# https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
18+
# The sieve of Eratosthenes is one of the most efficient ways to find all primes
19+
# smaller than n when n is smaller than 10 million. Only for positive numbers.
20+
# >>> prime_sum(2_000_000)
21+
# >>> solution(2_000_000)
22+
# 142913828922
23+
# >>> prime_sum(1_000)
24+
# >>> solution(1_000)
25+
# 76127
26+
# >>> prime_sum(5_000)
27+
# >>> solution(5_000)
28+
# 1548136
29+
# >>> prime_sum(10_000)
30+
# >>> solution(10_000)
31+
# 5736396
32+
# >>> prime_sum(7)
33+
# >>> solution(7)
34+
# 10
35+
# >>> prime_sum(7.1) # doctest: +ELLIPSIS
36+
# >>> solution(7.1) # doctest: +ELLIPSIS
37+
# Traceback (most recent call last):
38+
# ...
39+
# TypeError: 'float' object cannot be interpreted as an integer
40+
# >>> prime_sum(-7) # doctest: +ELLIPSIS
41+
# >>> solution(-7) # doctest: +ELLIPSIS
42+
# Traceback (most recent call last):
43+
# ...
44+
# IndexError: list assignment index out of range
45+
# >>> prime_sum("seven") # doctest: +ELLIPSIS
46+
# >>> solution("seven") # doctest: +ELLIPSIS
47+
# Traceback (most recent call last):
48+
# ...
49+
# TypeError: can only concatenate str (not "int") to str
50+
# """
51+
# list_ = [0 for i in range(n + 1)]
52+
# list_[0] = 1
53+
# list_[1] = 1
54+
# primality_list = [0 for i in range(n + 1)]
55+
# primality_list[0] = 1
56+
# primality_list[1] = 1
5757

58-
for i in range(2, int(n ** 0.5) + 1):
59-
if list_[i] == 0:
60-
if primality_list[i] == 0:
61-
for j in range(i * i, n + 1, i):
62-
list_[j] = 1
63-
s = 0
64-
primality_list[j] = 1
65-
sum_of_primes = 0
66-
for i in range(n):
67-
if list_[i] == 0:
68-
s += i
69-
return s
70-
if primality_list[i] == 0:
71-
sum_of_primes += i
72-
return sum_of_primes
58+
# for i in range(2, int(n ** 0.5) + 1):
59+
# if list_[i] == 0:
60+
# if primality_list[i] == 0:
61+
# for j in range(i * i, n + 1, i):
62+
# list_[j] = 1
63+
# s = 0
64+
# primality_list[j] = 1
65+
# sum_of_primes = 0
66+
# for i in range(n):
67+
# if list_[i] == 0:
68+
# s += i
69+
# return s
70+
# if primality_list[i] == 0:
71+
# sum_of_primes += i
72+
# return sum_of_primes
7373

7474

75-
if __name__ == "__main__":
76-
# import doctest
77-
# doctest.testmod()
78-
print(prime_sum(int(input().strip())))
79-
print(solution(int(input().strip())))
75+
#if __name__ == "__main__":
76+
# # import doctest
77+
# # doctest.testmod()
78+
# print(prime_sum(int(input().strip())))
79+
# print(solution(int(input().strip())))

0 commit comments

Comments
 (0)