-
Notifications
You must be signed in to change notification settings - Fork 143
/
Copy pathsharedRMSprop.py
60 lines (49 loc) · 2.16 KB
/
sharedRMSprop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from torch import optim
# Non-centered RMSprop update with shared statistics (without momentum)
class SharedRMSprop(optim.RMSprop):
"""Implements RMSprop algorithm with shared states.
"""
def __init__(self, params, lr=1e-2, alpha=0.99, eps=1e-8, weight_decay=0):
super(SharedRMSprop, self).__init__(params, lr=lr, alpha=alpha, eps=eps, weight_decay=weight_decay, momentum=0, centered=False)
# State initialisation (must be done before step, else will not be shared between threads)
for group in self.param_groups:
for p in group['params']:
state = self.state[p]
state['step'] = p.data.new().resize_(1).zero_()
state['square_avg'] = p.data.new().resize_as_(p.data).zero_()
def share_memory(self):
for group in self.param_groups:
for p in group['params']:
state = self.state[p]
state['step'].share_memory_()
state['square_avg'].share_memory_()
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
state = self.state[p]
square_avg = state['square_avg']
alpha = group['alpha']
state['step'] += 1
if group['weight_decay'] != 0:
grad = grad.add(group['weight_decay'], p.data)
# g = αg + (1 - α)Δθ^2
square_avg.mul_(alpha).addcmul_(1 - alpha, grad, grad)
# θ ← θ - ηΔθ/√(g + ε)
avg = square_avg.sqrt().add_(group['eps'])
p.data.addcdiv_(-group['lr'], grad, avg)
return loss