-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathjobs.py
182 lines (139 loc) · 4.76 KB
/
jobs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import sys
import os.path
import subprocess
import datetime
import uuid
import time
import subprocess
import joblib
import pandas
import numpy
from microesc import common
def arglist(options):
def format_arg(k, v):
if v is None:
return "--{}".format(k)
else:
return "--{}={}".format(k, v)
args = [ format_arg(k, v) for k, v in options.items() ]
return args
def command_for_job(options):
args = [
'python3', 'train.py'
]
args += arglist(options)
return args
def generate_train_jobs(experiments, settings_path, folds, overrides,
ignored = [ 'nickname' ]):
timestamp = datetime.datetime.now().strftime('%Y%m%d-%H%M')
unique = str(uuid.uuid4())[0:4]
def name(experiment, fold):
name = "-".join([experiment, timestamp, unique])
return name+'-fold{}'.format(fold)
def create_job(exname, experiment, fold):
n = name(exname, fold)
options = {
'name': n,
'fold': fold,
'settings': settings_path,
}
for k, v in experiment.items():
# overrides per experiment
if k == 'modelcheck':
if v == 'skip':
options['skip_model_check'] = None
else:
options[k] = v
for k, v in overrides.items():
options[k] = v
for k in ignored:
del options[k]
return options
jobs = []
for fold in folds:
for idx, ex in experiments.iterrows():
j = create_job(str(idx), ex, fold)
jobs.append(j)
assert len(jobs) == len(experiments) * len(folds), len(jobs)
return jobs
def run_job(jobdata, out_dir, verbose=2):
args = command_for_job(jobdata)
job_dir = os.path.join(out_dir, jobdata['name'])
common.ensure_directories(job_dir)
log_path = os.path.join(job_dir, 'stdout.log')
cmdline = ' '.join(args)
with open(os.path.join(job_dir, 'cmdline'), 'w') as f:
f.write(cmdline)
start = time.time()
print('starting job', cmdline)
print('job log', log_path)
# Read stdout and write to log, following https://stackoverflow.com/a/18422264/1967571
exitcode = None
with open(log_path, 'w') as log_file:
process = subprocess.Popen(args, shell=False, stdout=subprocess.PIPE)
for line in iter(process.stdout.readline, b''):
line = line.decode('utf-8')
if verbose > 2:
sys.stdout.write(line)
log_file.write(line)
log_file.flush()
exitcode = process.wait()
files = os.listdir(job_dir)
assert 'train.csv' in files, files
assert 'history.csv' in files, files
model_files = [ p for p in files if p.endswith('.hdf5') ]
assert len(model_files) > 0, files
end = time.time()
res = {
'start': start,
'end': end,
'exitcode': exitcode,
}
return res
def run_jobs(commands, out_dir, n_jobs=5, verbose=1):
jobs = [joblib.delayed(run_job)(cmd, out_dir) for cmd in commands]
out = joblib.Parallel(n_jobs=n_jobs, verbose=verbose)(jobs)
return out
def parse(args):
import argparse
parser = argparse.ArgumentParser(description='Generate jobs')
common.add_arguments(parser)
a = parser.add_argument
a('--experiments', default='models.csv',
help='%(default)s')
a('--check', action='store_true',
help='Only run a pre-flight check')
a('--jobs', type=int, default=5,
help='Number of parallel jobs')
a('--folds', type=int, default=10,
help='Number of folds to test')
a('--start', type=int, default=0,
help='First experiment')
a('--stop', type=int, default=None,
help='Last experiment')
parsed = parser.parse_args(args)
return parsed
def main():
args = parse(sys.argv[1:])
experiments = pandas.read_csv(args.experiments)
settings = common.load_settings_path(args.settings_path)
stop = len(experiments) if args.stop is None else args.stop
experiments = experiments.loc[range(args.start, stop)]
overrides = {}
folds = list(range(1, args.folds+1))
assert max(folds) <= 10
if args.check:
batches = 2
overrides['batch'] = 10
overrides['epochs'] = 1
overrides['train_samples'] = batches * overrides['batch']
overrides['val_samples'] = batches * overrides['batch']
cmds = generate_train_jobs(experiments, args.settings_path, folds, overrides)
print('Preparing {} jobs', len(cmds))
print('\n'.join([ c['name'] for c in cmds ]))
out = run_jobs(cmds, args.models_dir, n_jobs=args.jobs)
print(out)
success = all([ o['exitcode'] == 0 for o in out ])
assert success
if __name__ == '__main__':
main()