-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtest.py
242 lines (175 loc) · 7.4 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import math
import os.path
import sys
import keras
import sklearn
import pandas
import numpy
import keras.metrics
from . import urbansound8k, features, common, stats
def load_model_info(jobs_dir, job_dir):
experiment, date, time, rnd, fold = job_dir.split('-')
hist_path = os.path.join(jobs_dir, job_dir, 'train.csv')
df = pandas.read_csv(hist_path)
df['epoch'] = df.epoch + 1
df['fold'] = int(fold.lstrip('fold'))
df['experiment'] = experiment
df['run'] = '-'.join([date, time, rnd])
models = []
for fname in os.listdir(os.path.join(jobs_dir, job_dir)):
if fname.endswith('model.hdf5'):
models.append(fname)
def get_epoch(s):
e = s.split('-')[0].lstrip('e')
e = int(e)
return e
models = sorted(models, key=get_epoch)
assert models[0].startswith('e01-')
last_model = models[len(models)-1]
expected_last = 'e{:02d}-'.format(len(models))
assert last_model.startswith(expected_last), (last_model, expected_last)
df['model_path'] = [ os.path.join(jobs_dir, job_dir, m) for m in models ]
return df
def load_train_history(jobs_dir, limit=None):
jobs = os.listdir(jobs_dir)
if limit:
matching = [ d for d in jobs if limit in d ]
else:
matching = jobs
dataframes = []
for job_dir in matching:
try:
df = load_model_info(jobs_dir, job_dir)
except (FileNotFoundError, ValueError) as e:
print('Failed to load job {}: {}'.format(job_dir, str(e)))
continue
dataframes.append(df)
df = pandas.concat(dataframes)
return df
def test_load_history():
jobs_dir = '../../jobs'
job_id = 'sbcnn44k128aug-20190227-0220-48ba'
df = load_history()
def pick_best(history, n_best=1):
def best_by_loss(df):
return df.sort_values('voted_val_acc', ascending=False).head(n_best)
return history.groupby(['experiment', 'fold']).apply(best_by_loss)
def evaluate_model(predictor, model_path, val_data, test_data):
def score(model, data):
y_true = data.classID
p = predictor(model, data)
y_pred = numpy.argmax(p, axis=1)
# other metrics can be derived from confusion matrix
acc = sklearn.metrics.accuracy_score(y_true, y_pred)
labels = list(range(len(urbansound8k.classnames)))
confusion = sklearn.metrics.confusion_matrix(y_true, y_pred, labels=labels)
return acc, confusion
model = keras.models.load_model(model_path)
salience_info = { 'foreground': 1, 'background': 2 }
test_info = { 'val': val_data, 'test': test_data }
out = {}
for setname, data in test_info.items():
for variant, salience in salience_info.items():
key = '{}_{}'.format(setname, variant)
acc, confusion = score(model, data[data.salience == salience])
print('acc for ', key, acc)
out[key] = confusion
out['val'] = out['val_foreground'] + out['val_background']
out['test'] = out['test_foreground'] + out['test_background']
return out
def evaluate(models, folds_data, predictor, out_dir, dry_run=False):
def eval_experiment(df):
results = {}
by_fold = df.sort_index(level="fold", ascending=True)
for idx, row in by_fold.iterrows():
fold = row['fold']
assert fold > 0, 'fold number should be 1 indexed'
print('Testing model {} fold={}'.format(row['experiment'], fold))
model_path = row['model_path']
val = folds_data[fold-1][1]
test = folds_data[fold-1][2]
test_folds = test.fold.unique()
assert len(test_folds) == 1
assert test_folds[0] == fold
val_folds = val.fold.unique()
assert len(val_folds) == 1
assert val_folds[0] != fold
train_data = folds_data[fold-1][0]
train_files = set(train_data.slice_file_name.unique())
assert len(train_files) > 6500, len(train_files)
test_files = set(test.slice_file_name.unique())
assert len(test_files) > 700
common_files = train_files.intersection(test_files)
assert len(common_files) == 0, common_files
if dry_run:
val = test[0:20]
test = test[0:20]
result = evaluate_model(predictor, model_path, val, test)
# convert to dict-of-arrays
for k, v in result.items():
if results.get(k) is None:
results[k] = []
results[k].append(v)
exname = df['experiment'].unique()[0]
results_path = os.path.join(out_dir, '{}.confusion.npz'.format(exname))
numpy.savez(results_path, **results)
print('Wrote', results_path)
return results_path
out = models.groupby(level='experiment').apply(eval_experiment)
return out
def parse(args):
import argparse
parser = argparse.ArgumentParser(description='Test trained models')
a = parser.add_argument
common.add_arguments(parser)
a('--run', dest='run', default='',
help='%(default)s')
a('--check', action='store_true', default='',
help='Run a check pass, not actually evaluating')
a('--skip-stats', action='store_true', default='',
help='Do not compute on-device stats')
a('--out', dest='results_dir', default='./data/results',
help='%(default)s')
parsed = parser.parse_args(args)
return parsed
def main():
args = parse(sys.argv[1:])
out_dir = os.path.join(args.results_dir, args.run)
common.ensure_directories(out_dir)
urbansound8k.maybe_download_dataset(args.datasets_dir)
data = urbansound8k.load_dataset()
folds = urbansound8k.folds(data)
exsettings = common.load_settings_path(args.settings_path)
frames = exsettings['frames']
voting = exsettings['voting']
overlap = exsettings['voting_overlap']
settings = features.settings(exsettings)
def load_sample(sample):
return features.load_sample(sample, settings, start_time=sample.start,
window_frames=frames, feature_dir=args.features_dir,
normalize=exsettings['normalize'])
def predict(model, data):
return features.predict_voted(exsettings, model, data, loader=load_sample,
method=voting, overlap=overlap)
history = load_train_history(args.models_dir, args.run)
n_folds = len(history.fold.unique())
n_experiments = len(history.experiment.unique())
print("Found {} experiments across {} folds", n_folds, n_experiments)
best = pick_best(history)
print('Best models\n', best[['epoch', 'fold', 'voted_val_acc']])
print('Computing model info')
def get_stats(row):
ex = row.iloc[0]
model = ex['model_path']
model_stats, layer_info = stats.model_info(model)
layer_info_path = os.path.join(out_dir, '{}.layers.csv'.format(ex['experiment']))
layer_info.to_csv(layer_info_path)
return pandas.Series(model_stats)
if not args.skip_stats:
model_stats = best.groupby(level='experiment').apply(get_stats)
print('Model stats\n', model_stats)
model_stats.to_csv(os.path.join(out_dir, 'stm32stats.csv'))
print('Testing models...')
results = evaluate(best, folds, predictor=predict, out_dir=out_dir, dry_run=args.check)
if __name__ == '__main__':
main()