-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathdirac_improved_staggered.cpp
256 lines (212 loc) · 9.79 KB
/
dirac_improved_staggered.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
#include <dirac_quda.h>
#include <dslash_quda.h>
#include <blas_quda.h>
#include <multigrid.h>
namespace quda {
DiracImprovedStaggered::DiracImprovedStaggered(const DiracParam ¶m) :
Dirac(param),
fatGauge(param.fatGauge),
longGauge(param.longGauge)
{
}
DiracImprovedStaggered::DiracImprovedStaggered(const DiracImprovedStaggered &dirac)
: Dirac(dirac), fatGauge(dirac.fatGauge), longGauge(dirac.longGauge) { }
DiracImprovedStaggered::~DiracImprovedStaggered() { }
DiracImprovedStaggered& DiracImprovedStaggered::operator=(const DiracImprovedStaggered &dirac)
{
if (&dirac != this) {
Dirac::operator=(dirac);
fatGauge = dirac.fatGauge;
longGauge = dirac.longGauge;
}
return *this;
}
void DiracImprovedStaggered::Dslash(cvector_ref<ColorSpinorField> &out, cvector_ref<const ColorSpinorField> &in,
const QudaParity parity) const
{
checkParitySpinor(in, out);
ApplyImprovedStaggered(out, in, *fatGauge, *longGauge, 0., in, parity, dagger, commDim.data, profile);
}
void DiracImprovedStaggered::DslashXpay(cvector_ref<ColorSpinorField> &out, cvector_ref<const ColorSpinorField> &in,
const QudaParity parity, cvector_ref<const ColorSpinorField> &x, double k) const
{
checkParitySpinor(in, out);
// Need to catch the zero mass case.
if (k == 0.0) {
// There's a sign convention difference for Dslash vs DslashXpay, which is
// triggered by looking for k == 0. We need to hack around this.
if (dagger == QUDA_DAG_YES) {
ApplyImprovedStaggered(out, in, *fatGauge, *longGauge, 0., x, parity, QUDA_DAG_NO, commDim.data, profile);
} else {
ApplyImprovedStaggered(out, in, *fatGauge, *longGauge, 0., x, parity, QUDA_DAG_YES, commDim.data, profile);
}
} else {
ApplyImprovedStaggered(out, in, *fatGauge, *longGauge, k, x, parity, dagger, commDim.data, profile);
}
}
// Full staggered operator
void DiracImprovedStaggered::M(cvector_ref<ColorSpinorField> &out, cvector_ref<const ColorSpinorField> &in) const
{
checkFullSpinor(out, in);
// Need to flip sign via dagger convention if mass == 0.
if (mass == 0.0) {
if (dagger == QUDA_DAG_YES) {
ApplyImprovedStaggered(out, in, *fatGauge, *longGauge, 0., in, QUDA_INVALID_PARITY, QUDA_DAG_NO, commDim.data,
profile);
} else {
ApplyImprovedStaggered(out, in, *fatGauge, *longGauge, 0., in, QUDA_INVALID_PARITY, QUDA_DAG_YES, commDim.data,
profile);
}
} else {
ApplyImprovedStaggered(out, in, *fatGauge, *longGauge, 2. * mass, in, QUDA_INVALID_PARITY, dagger, commDim.data,
profile);
}
}
void DiracImprovedStaggered::MdagM(cvector_ref<ColorSpinorField> &out, cvector_ref<const ColorSpinorField> &in) const
{
auto tmp = getFieldTmp(out.Even());
//even
Dslash(tmp, in.Even(), QUDA_ODD_PARITY);
DslashXpay(out.Even(), tmp, QUDA_EVEN_PARITY, in.Even(), 4 * mass * mass);
// odd
Dslash(tmp, in.Odd(), QUDA_EVEN_PARITY);
DslashXpay(out.Odd(), tmp, QUDA_ODD_PARITY, in.Odd(), 4 * mass * mass);
}
void DiracImprovedStaggered::prepare(cvector_ref<ColorSpinorField> &sol, cvector_ref<ColorSpinorField> &src,
cvector_ref<ColorSpinorField> &x, cvector_ref<const ColorSpinorField> &b,
const QudaSolutionType solType) const
{
if (solType == QUDA_MATPC_SOLUTION || solType == QUDA_MATPCDAG_MATPC_SOLUTION) {
errorQuda("Preconditioned solution requires a preconditioned solve_type");
}
create_alias(src, b);
create_alias(sol, x);
}
void DiracImprovedStaggered::reconstruct(cvector_ref<ColorSpinorField> &, cvector_ref<const ColorSpinorField> &,
const QudaSolutionType) const
{
// do nothing
}
void DiracImprovedStaggered::SmearOp(cvector_ref<ColorSpinorField> &out, cvector_ref<const ColorSpinorField> &in,
double, double, int t0, QudaParity parity) const
{
checkSpinorAlias(in, out);
bool is_time_slice = t0 >= 0 && t0 < comm_dim(3) * in.X(3) ? true : false;
if( is_time_slice && laplace3D > 3 )
{
logQuda(QUDA_DEBUG_VERBOSE, "t0 will be ignored for d>3 dimensional Laplacian");
is_time_slice = false;
}
int t0_local = t0 - comm_coord(3) * in.X(3);
if (is_time_slice && (t0_local < 0 || t0_local >= in.X(3)))
t0_local = -1; // when source is not in this local lattice
int comm_dim[4] = {};
// only switch on comms needed for directions with a derivative
for (int i = 0; i < 4; i++) {
comm_dim[i] = comm_dim_partitioned(i);
if (laplace3D == i) comm_dim[i] = 0;
}
if (in.SiteSubset() == QUDA_PARITY_SITE_SUBSET) {
errorQuda("Single parity site smearing not supported");
} else {
ApplyStaggeredQSmear(out, in, *gauge, t0_local, is_time_slice, parity, laplace3D, dagger, comm_dim, profile);
}
}
void DiracImprovedStaggered::createCoarseOp(GaugeField &Y, GaugeField &X, const Transfer &T, double, double mass,
double, double, bool allow_truncation) const
{
if (T.getTransferType() == QUDA_TRANSFER_OPTIMIZED_KD || T.getTransferType() == QUDA_TRANSFER_OPTIMIZED_KD_DROP_LONG)
errorQuda("The optimized improved Kahler-Dirac operator is not built through createCoarseOp");
StaggeredCoarseOp(Y, X, T, *fatGauge, *longGauge, *fatGauge, mass, allow_truncation, QUDA_ASQTAD_DIRAC,
QUDA_MATPC_INVALID);
}
void DiracImprovedStaggered::prefetch(QudaFieldLocation mem_space, qudaStream_t stream) const
{
Dirac::prefetch(mem_space, stream);
fatGauge->prefetch(mem_space, stream);
longGauge->prefetch(mem_space, stream);
}
DiracImprovedStaggeredPC::DiracImprovedStaggeredPC(const DiracParam ¶m)
: DiracImprovedStaggered(param)
{
}
DiracImprovedStaggeredPC::DiracImprovedStaggeredPC(const DiracImprovedStaggeredPC &dirac)
: DiracImprovedStaggered(dirac)
{
}
DiracImprovedStaggeredPC::~DiracImprovedStaggeredPC()
{
}
DiracImprovedStaggeredPC& DiracImprovedStaggeredPC::operator=(const DiracImprovedStaggeredPC &dirac)
{
if (&dirac != this) {
DiracImprovedStaggered::operator=(dirac);
}
return *this;
}
// Unlike with clover, for ex, we don't need a custom Dslash or DslashXpay.
// That's because the convention for preconditioned staggered is to
// NOT divide out the factor of "2m", i.e., for the even system we invert
// (4m^2 - D_eo D_oe), not (1 - (1/(4m^2)) D_eo D_oe).
void DiracImprovedStaggeredPC::M(cvector_ref<ColorSpinorField> &out, cvector_ref<const ColorSpinorField> &in) const
{
// Convention note: Dslash applies D_eo, DslashXpay applies 4m^2 - D_oe!
// Note the minus sign convention in the Xpay version.
// This applies equally for the e <-> o permutation.
auto tmp = getFieldTmp(out);
Dslash(tmp, in, other_parity);
DslashXpay(out, tmp, this_parity, in, 4 * mass * mass);
}
void DiracImprovedStaggeredPC::MdagM(cvector_ref<ColorSpinorField> &, cvector_ref<const ColorSpinorField> &) const
{
errorQuda("MdagM is no longer defined for DiracImprovedStaggeredPC. Use M instead");
}
void DiracImprovedStaggeredPC::prepare(cvector_ref<ColorSpinorField> &sol, cvector_ref<ColorSpinorField> &src,
cvector_ref<ColorSpinorField> &x, cvector_ref<const ColorSpinorField> &b,
const QudaSolutionType solType) const
{
if (solType == QUDA_MATPC_SOLUTION || solType == QUDA_MATPCDAG_MATPC_SOLUTION) {
for (auto i = 0u; i < b.size(); i++) {
// we desire solution to preconditioned system
src[i] = const_cast<ColorSpinorField &>(b[i]).create_alias();
sol[i] = x[i].create_alias();
}
return;
}
create_alias(src, x(other_parity));
create_alias(sol, x(this_parity));
// we desire solution to full system.
// With the convention given in DiracStaggered::M(),
// the source is src = 2m b_e + D_eo b_o
// But remember, DslashXpay actually applies
// -D_eo. Flip the sign on 2m to compensate, and
// then flip the overall sign.
DslashXpay(src, b(other_parity), this_parity, b(this_parity), -2.0 * mass);
blas::ax(-1.0, src);
}
void DiracImprovedStaggeredPC::reconstruct(cvector_ref<ColorSpinorField> &x, cvector_ref<const ColorSpinorField> &b,
const QudaSolutionType solType) const
{
if (solType == QUDA_MATPC_SOLUTION || solType == QUDA_MATPCDAG_MATPC_SOLUTION) {
return;
}
checkFullSpinor(x, b);
// create full solution
// With the convention given in DiracStaggered::M(),
// the reconstruct is x_o = 1/(2m) (b_o + D_oe x_e)
// But remember: DslashXpay actually applies -D_oe,
// so just like above we need to flip the sign
// on b_o. We then correct this by applying an additional
// minus sign when we rescale by 2m.
DslashXpay(x(other_parity), x(this_parity), other_parity, b(other_parity), -1.0);
blas::ax(-0.5 / mass, x(other_parity));
}
void DiracImprovedStaggeredPC::createCoarseOp(GaugeField &Y, GaugeField &X, const Transfer &T, double, double mass,
double, double, bool allow_truncation) const
{
if (T.getTransferType() == QUDA_TRANSFER_OPTIMIZED_KD || T.getTransferType() == QUDA_TRANSFER_OPTIMIZED_KD_DROP_LONG)
errorQuda("The optimized improved Kahler-Dirac operator is not built through createCoarseOp");
StaggeredCoarseOp(Y, X, T, *fatGauge, *longGauge, *fatGauge, mass, allow_truncation, QUDA_ASQTADPC_DIRAC,
QUDA_MATPC_INVALID);
}
} // namespace quda