Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

【开源实习】bit模型微调 #1995

Merged
merged 7 commits into from
Mar 25, 2025

Conversation

outbreak-sen
Copy link
Contributor

@outbreak-sen outbreak-sen commented Mar 19, 2025

bit微调

实现了"HorcruxNo13/bit-50"模型在"dpdl-benchmark/oxford_flowers102"数据集上的微调实验。
任务链接在https://gitee.com/mindspore/community/issues/IAUPCI
transformers+pytorch+3090的benchmark是自己编写的,仓库位于https://github.com/outbreak-sen/Bit_flowers102_Finetune
更改代码位于llm/finetune/bit,只包含mindnlp+mindspore的
实验结果如下

硬件

资源规格:NPU: 1*Ascend-D910B(显存: 64GB), CPU: 24, 内存: 192GB

智算中心:武汉智算中心

镜像:mindspore_2_5_py311_cann8

torch训练硬件资源规格:Nvidia 3090

模型与数据集

模型:"HorcruxNo13/bit-50"

数据集:"dpdl-benchmark/oxford_flowers102"

Eval Loss Values 表格

Epoch mindNLP torch
1 3.5184175968 4.6460494995
2 1.7758612633 4.2146801949
3 0.9314232469 3.8055384159
4 0.6095938683 3.4315345287
5 0.4878421128 3.1143600941
6 0.4401741028 2.8422958851
7 0.4239776731 2.6192340851
8 0.4162144363 2.4506986141
9 0.4113974869 2.3450050354
10 0.4095760584 2.2997686863

Test Accuracy 表格

Epoch mindNLP torch
1 0.9219 0.6225

图片分类测试

问题来自评估数据集的第一个问题

  • 问题输入:
    dataset['test'][0]['image']
  • 真实标签:
    26
  • mindnlp未微调前的回答:
    25
  • mindnlp微调后的回答:
    26
  • torch微调前的回答:
    41
  • torch微调后的回答:
    26

@lvyufeng lvyufeng merged commit 59c6eda into mindspore-lab:master Mar 25, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants