-
Notifications
You must be signed in to change notification settings - Fork 325
/
Copy pathdeep_bayesian_active_learning.py
96 lines (80 loc) · 3.3 KB
/
deep_bayesian_active_learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import keras
import numpy as np
from keras import backend as K
from keras.datasets import mnist
from keras.layers import (Activation, Conv2D, Dense, Dropout, Flatten,
MaxPooling2D)
from keras.models import Sequential
from keras.regularizers import l2
from keras.wrappers.scikit_learn import KerasClassifier
from modAL.models import ActiveLearner
def create_keras_model():
model = Sequential()
model.add(Conv2D(32, (4, 4), activation='relu'))
model.add(Conv2D(32, (4, 4), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=["accuracy"])
return model
# create the classifier
classifier = KerasClassifier(create_keras_model)
# read training data
(X_train, y_train), (X_test, y_test) = mnist.load_data()
# assemble initial data
initial_idx = np.array([],dtype=np.int)
for i in range(10):
idx = np.random.choice(np.where(y_train==i)[0], size=2, replace=False)
initial_idx = np.concatenate((initial_idx, idx))
# Preprocessing
X_train = X_train.reshape(60000, 28, 28, 1).astype('float32') / 255.
X_test = X_test.reshape(10000, 28, 28, 1).astype('float32') / 255.
y_train = keras.utils.to_categorical(y_train, 10)
y_test = keras.utils.to_categorical(y_test, 10)
X_initial = X_train[initial_idx]
y_initial = y_train[initial_idx]
# remove the initial data from the pool of unlabelled examples
X_pool = np.delete(X_train, initial_idx, axis=0)
y_pool = np.delete(y_train, initial_idx, axis=0)
"""
Query Strategy
"""
def max_entropy(learner, X, n_instances=1, T=100):
random_subset = np.random.choice(X.shape[0], 2000, replace=False)
MC_output = K.function([learner.estimator.model.layers[0].input, K.learning_phase()],
[learner.estimator.model.layers[-1].output])
learning_phase = True
MC_samples = [MC_output([X[random_subset], learning_phase])[0] for _ in range(T)]
MC_samples = np.array(MC_samples) # [#samples x batch size x #classes]
expected_p = np.mean(MC_samples, axis=0)
acquisition = - np.sum(expected_p * np.log(expected_p + 1e-10), axis=-1) # [batch size]
idx = (-acquisition).argsort()[:n_instances]
return random_subset[idx]
def uniform(learner, X, n_instances=1):
return np.random.choice(range(len(X)), size=n_instances, replace=False)
"""
Training the ActiveLearner
"""
# initialize ActiveLearner
learner = ActiveLearner(
estimator=classifier,
X_training=X_initial,
y_training=y_initial,
query_strategy=max_entropy,
verbose=0
)
# the active learning loop
n_queries = 100
perf_hist = [learner.score(X_test, y_test, verbose=0)]
for index in range(n_queries):
query_idx, query_instance = learner.query(X_pool, n_instances=10)
learner.teach(X_pool[query_idx], y_pool[query_idx], epochs=50, batch_size=128, verbose=0)
# remove queried instance from pool
X_pool = np.delete(X_pool, query_idx, axis=0)
y_pool = np.delete(y_pool, query_idx, axis=0)
model_accuracy = learner.score(X_test, y_test, verbose=0)
print('Accuracy after query {n}: {acc:0.4f}'.format(n=index + 1, acc=model_accuracy))
perf_hist.append(model_accuracy)