-
Notifications
You must be signed in to change notification settings - Fork 325
/
Copy pathkeras_integration.py
90 lines (74 loc) · 2.67 KB
/
keras_integration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
"""
This example demonstrates how to use the active learning interface with Keras.
The example uses the scikit-learn wrappers of Keras. For more info, see https://keras.io/scikit-learn-api/
"""
import keras
import numpy as np
from keras.datasets import mnist
from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D
from keras.models import Sequential
from keras.wrappers.scikit_learn import KerasClassifier
from modAL.models import ActiveLearner
# build function for the Keras' scikit-learn API
def create_keras_model():
"""
This function compiles and returns a Keras model.
Should be passed to KerasClassifier in the Keras scikit-learn API.
"""
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adadelta', metrics=['accuracy'])
return model
# create the classifier
classifier = KerasClassifier(create_keras_model)
"""
Data wrangling
1. Reading data from Keras
2. Assembling initial training data for ActiveLearner
3. Generating the pool
"""
# read training data
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape(60000, 28, 28, 1).astype('float32') / 255
X_test = X_test.reshape(10000, 28, 28, 1).astype('float32') / 255
y_train = keras.utils.to_categorical(y_train, 10)
y_test = keras.utils.to_categorical(y_test, 10)
# assemble initial data
n_initial = 1000
initial_idx = np.random.choice(range(len(X_train)), size=n_initial, replace=False)
X_initial = X_train[initial_idx]
y_initial = y_train[initial_idx]
# generate the pool
# remove the initial data from the training dataset
X_pool = np.delete(X_train, initial_idx, axis=0)
y_pool = np.delete(y_train, initial_idx, axis=0)
"""
Training the ActiveLearner
"""
# initialize ActiveLearner
learner = ActiveLearner(
estimator=classifier,
X_training=X_initial, y_training=y_initial,
verbose=1
)
# the active learning loop
n_queries = 10
for idx in range(n_queries):
query_idx, query_instance = learner.query(X_pool, n_instances=100, verbose=0)
print(query_idx)
learner.teach(
X=X_pool[query_idx], y=y_pool[query_idx], only_new=True,
verbose=1
)
# remove queried instance from pool
X_pool = np.delete(X_pool, query_idx, axis=0)
y_pool = np.delete(y_pool, query_idx, axis=0)
# the final accuracy score
print(learner.score(X_test, y_test, verbose=1))