-
Notifications
You must be signed in to change notification settings - Fork 325
/
Copy pathruntime_comparison.py
213 lines (169 loc) · 7.84 KB
/
runtime_comparison.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
from time import time
import numpy as np
from acton.acton import main as acton_main
from alp.active_learning.active_learning import \
ActiveLearner as ActiveLearnerALP
from libact.base.dataset import Dataset
from libact.labelers import IdealLabeler
from libact.models.logistic_regression import \
LogisticRegression as LogisticRegressionLibact
from libact.query_strategies import QueryByCommittee, UncertaintySampling
from libact.query_strategies.multiclass.expected_error_reduction import EER
from modAL.expected_error import expected_error_reduction
from modAL.models import ActiveLearner, Committee
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
runtime = {}
def timeit(n_reps=10):
def timer(func):
def timed_func(*args, **kwargs):
start = time()
for _ in range(n_reps):
result = func(*args, **kwargs)
end = time()
print("%s has been executed in %f s avg for %d reps" % (func.__name__, (end - start)/n_reps, n_reps))
runtime[func.__name__] = (end - start)/n_reps
return result
return timed_func
return timer
@timeit()
def libact_uncertainty(X, y, n_queries):
y_train = np.array([None for _ in range(len(y))])
y_train[0], y_train[50], y_train[100] = 0, 1, 2
libact_train_dataset = Dataset(X, y_train)
libact_full_dataset = Dataset(X, y)
libact_learner = LogisticRegressionLibact(solver='liblinear', n_jobs=1, multi_class='ovr') #SVM(gamma='auto', probability=True)
libact_qs = UncertaintySampling(libact_train_dataset, model=libact_learner, method='lc')
libact_labeler = IdealLabeler(libact_full_dataset)
libact_learner.train(libact_train_dataset)
for _ in range(n_queries):
query_idx = libact_qs.make_query()
query_label = libact_labeler.label(X[query_idx])
libact_train_dataset.update(query_idx, query_label)
libact_learner.train(libact_train_dataset)
@timeit()
def libact_EER(X, y, n_queries):
y_train = np.array([None for _ in range(len(y))])
y_train[0], y_train[50], y_train[100] = 0, 1, 2
libact_train_dataset = Dataset(X, y_train)
libact_full_dataset = Dataset(X, y)
libact_learner = LogisticRegressionLibact(solver='liblinear', n_jobs=1, multi_class='ovr') #SVM(gamma='auto', probability=True)
libact_qs = EER(libact_train_dataset, model=libact_learner, loss='01')
libact_labeler = IdealLabeler(libact_full_dataset)
libact_learner.train(libact_train_dataset)
for _ in range(n_queries):
query_idx = libact_qs.make_query()
query_label = libact_labeler.label(X[query_idx])
libact_train_dataset.update(query_idx, query_label)
libact_learner.train(libact_train_dataset)
@timeit()
def libact_QBC(X, y, n_queries):
y_train = np.array([None for _ in range(len(y))])
y_train[0], y_train[50], y_train[100] = 0, 1, 2
libact_train_dataset = Dataset(X, y_train)
libact_full_dataset = Dataset(X, y)
libact_learner_list = [LogisticRegressionLibact(solver='liblinear', n_jobs=1, multi_class='ovr'),
LogisticRegressionLibact(solver='liblinear', n_jobs=1, multi_class='ovr')]
libact_qs = QueryByCommittee(libact_train_dataset, models=libact_learner_list,
method='lc')
libact_labeler = IdealLabeler(libact_full_dataset)
for libact_learner in libact_learner_list:
libact_learner.train(libact_train_dataset)
for _ in range(n_queries):
query_idx = libact_qs.make_query()
query_label = libact_labeler.label(X[query_idx])
libact_train_dataset.update(query_idx, query_label)
for libact_learner in libact_learner_list:
libact_learner.train(libact_train_dataset)
@timeit()
def modAL_uncertainty(X, y, n_queries):
modAL_learner = ActiveLearner(LogisticRegression(solver='liblinear', n_jobs=1, multi_class='ovr'),
X_training=X[[0, 50, 100]], y_training=y[[0, 50, 100]])
for _ in range(n_queries):
query_idx, query_inst = modAL_learner.query(X)
modAL_learner.teach(X[query_idx], y[query_idx])
@timeit()
def modAL_QBC(X, y, n_queries):
learner_list = [ActiveLearner(LogisticRegression(solver='liblinear', n_jobs=1, multi_class='ovr'),
X_training=X[[0, 50, 100]], y_training=y[[0, 50, 100]]),
ActiveLearner(LogisticRegression(solver='liblinear', n_jobs=1, multi_class='ovr'),
X_training=X[[0, 50, 100]], y_training=y[[0, 50, 100]])]
modAL_learner = Committee(learner_list)
for _ in range(n_queries):
query_idx, query_inst = modAL_learner.query(X)
modAL_learner.teach(X[query_idx], y[query_idx])
@timeit()
def modAL_EER(X, y, n_queries):
modAL_learner = ActiveLearner(LogisticRegression(solver='liblinear', n_jobs=1, multi_class='ovr'),
query_strategy=expected_error_reduction,
X_training=X[[0, 50, 100]], y_training=y[[0, 50, 100]])
for _ in range(n_queries):
query_idx, query_inst = modAL_learner.query(X)
modAL_learner.teach(X[query_idx], y[query_idx])
@timeit()
# acton requires a txt format for data
def acton_uncertainty(data_path, n_queries):
# acton has no SVM support, so the LogisticRegression model is used
acton_main(
data_path=data_path,
feature_cols=['feat01', 'feat02', 'feat03', 'feat04'],
label_col='label',
output_path='out.csv',
n_epochs=n_queries,
initial_count=3,
recommender='UncertaintyRecommender',
predictor='LogisticRegression')
@timeit()
# acton requires a txt format for data
def acton_QBC(data_path, n_queries):
# acton has no SVM support, so the LogisticRegression model is used
acton_main(
data_path=data_path,
feature_cols=['feat01', 'feat02', 'feat03', 'feat04'],
label_col='label',
output_path='out.csv',
n_epochs=n_queries,
initial_count=3,
recommender='QBCRecommender',
predictor='LogisticRegressionCommittee')
@timeit()
def alp_uncertainty(X, y, n_queries):
X_labeled, y_labeled = X[[0, 50, 100]], y[[0, 50, 100]]
estimator = LogisticRegression(solver='liblinear', n_jobs=1, multi_class='ovr')
estimator.fit(X_labeled, y_labeled)
learner = ActiveLearnerALP(strategy='least_confident')
for _ in range(n_queries):
query_idx = learner.rank(estimator, X, num_queries=1)
X_labeled = np.concatenate((X_labeled, X[query_idx]), axis=0)
y_labeled = np.concatenate((y_labeled, y[query_idx]), axis=0)
estimator.fit(X_labeled, y_labeled)
@timeit()
def alp_QBC(X, y, n_queries):
X_labeled, y_labeled = X[[0, 50, 100]], y[[0, 50, 100]]
estimators = [LogisticRegression(solver='liblinear', n_jobs=1, multi_class='ovr'),
LogisticRegression(solver='liblinear', n_jobs=1, multi_class='ovr')]
for estimator in estimators:
estimator.fit(X_labeled, y_labeled)
learner = ActiveLearnerALP(strategy='vote_entropy')
for _ in range(n_queries):
query_idx = learner.rank(estimators, X, num_queries=1)
X_labeled = np.concatenate((X_labeled, X[query_idx]), axis=0)
y_labeled = np.concatenate((y_labeled, y[query_idx]), axis=0)
for estimator in estimators:
estimator.fit(X_labeled, y_labeled)
def comparisons(n_queries=10):
# loading the data
X, y = load_iris(return_X_y=True)
libact_uncertainty(X, y, n_queries)
libact_QBC(X, y, n_queries)
libact_EER(X, y, n_queries)
acton_uncertainty('iris.csv', n_queries)
acton_QBC('iris.csv', n_queries)
alp_uncertainty(X, y, n_queries)
alp_QBC(X, y, n_queries)
modAL_uncertainty(X, y, n_queries)
modAL_QBC(X, y, n_queries)
modAL_EER(X, y, n_queries)
if __name__ == '__main__':
comparisons()
print(runtime)