Skip to content

Commit 855be41

Browse files
committed
Organize imports & catch all exceptions in querys
1 parent ff8356b commit 855be41

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

51 files changed

+187
-214
lines changed

examples/active_regression.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -2,11 +2,11 @@
22
Active regression example with Gaussian processes.
33
"""
44

5-
import numpy as np
65
import matplotlib.pyplot as plt
7-
from sklearn.gaussian_process import GaussianProcessRegressor
8-
from sklearn.gaussian_process.kernels import WhiteKernel, RBF
6+
import numpy as np
97
from modAL.models import ActiveLearner
8+
from sklearn.gaussian_process import GaussianProcessRegressor
9+
from sklearn.gaussian_process.kernels import RBF, WhiteKernel
1010

1111

1212
# query strategy for regression

examples/bagging.py

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -2,11 +2,12 @@
22
This example shows how to build models with bagging using the Committee model.
33
"""
44

5-
import numpy as np
65
from itertools import product
6+
7+
import numpy as np
78
from matplotlib import pyplot as plt
8-
from sklearn.neighbors import KNeighborsClassifier
99
from modAL.models import ActiveLearner, Committee
10+
from sklearn.neighbors import KNeighborsClassifier
1011

1112
# creating the dataset
1213
im_width = 500
@@ -90,4 +91,4 @@
9091
plt.subplot(1, n_learners, learner_idx+1)
9192
plt.imshow(learner.predict(X_pool).reshape(im_height, im_width))
9293
plt.title('Learner no. %d after refitting' % (learner_idx + 1))
93-
plt.show()
94+
plt.show()

examples/bayesian_optimization.py

Lines changed: 6 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -1,11 +1,12 @@
1-
import numpy as np
2-
import matplotlib.pyplot as plt
31
from functools import partial
2+
3+
import matplotlib.pyplot as plt
4+
import numpy as np
5+
from modAL.acquisition import (max_EI, max_PI, max_UCB, optimizer_EI,
6+
optimizer_PI, optimizer_UCB)
7+
from modAL.models import BayesianOptimizer
48
from sklearn.gaussian_process import GaussianProcessRegressor
59
from sklearn.gaussian_process.kernels import Matern
6-
from modAL.models import BayesianOptimizer
7-
from modAL.acquisition import optimizer_PI, optimizer_EI, optimizer_UCB, max_PI, max_EI, max_UCB
8-
910

1011
# generating the data
1112
X = np.linspace(0, 20, 1000).reshape(-1, 1)

examples/bayesian_optimization_multidim.py

Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,8 @@
11
import numpy as np
2+
from modAL.acquisition import max_EI
3+
from modAL.models import BayesianOptimizer
24
from sklearn.gaussian_process import GaussianProcessRegressor
35
from sklearn.gaussian_process.kernels import Matern
4-
from modAL.models import BayesianOptimizer
5-
from modAL.acquisition import max_EI
6-
76

87
# generating the data
98
x1, x2 = np.linspace(0, 10, 11).reshape(-1, 1), np.linspace(0, 10, 11).reshape(-1, 1)

examples/custom_query_strategies.py

Lines changed: 3 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -25,18 +25,16 @@ def custom_query_strategy(classifier, X, a_keyword_argument=42):
2525
and classifier margin.
2626
"""
2727

28-
import numpy as np
2928
import matplotlib.pyplot as plt
30-
29+
import numpy as np
30+
from modAL.models import ActiveLearner
31+
from modAL.uncertainty import classifier_margin, classifier_uncertainty
3132
from modAL.utils.combination import make_linear_combination, make_product
3233
from modAL.utils.selection import multi_argmax
33-
from modAL.uncertainty import classifier_uncertainty, classifier_margin
34-
from modAL.models import ActiveLearner
3534
from sklearn.datasets import make_blobs
3635
from sklearn.gaussian_process import GaussianProcessClassifier
3736
from sklearn.gaussian_process.kernels import RBF
3837

39-
4038
# generating the data
4139
centers = np.asarray([[-2, 3], [0.5, 5], [1, 1.5]])
4240
X, y = make_blobs(

examples/deep_bayesian_active_learning.py

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -2,12 +2,14 @@
22
import numpy as np
33
from keras import backend as K
44
from keras.datasets import mnist
5+
from keras.layers import (Activation, Conv2D, Dense, Dropout, Flatten,
6+
MaxPooling2D)
57
from keras.models import Sequential
6-
from keras.layers import Dense, Dropout, Activation, Flatten, Conv2D, MaxPooling2D
78
from keras.regularizers import l2
89
from keras.wrappers.scikit_learn import KerasClassifier
910
from modAL.models import ActiveLearner
1011

12+
1113
def create_keras_model():
1214
model = Sequential()
1315
model.add(Conv2D(32, (4, 4), activation='relu'))

examples/ensemble.py

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,9 @@
1-
import numpy as np
21
from itertools import product
2+
3+
import numpy as np
34
from matplotlib import pyplot as plt
4-
from sklearn.ensemble import RandomForestClassifier
55
from modAL.models import ActiveLearner, Committee
6+
from sklearn.ensemble import RandomForestClassifier
67

78
# creating the dataset
89
im_width = 500

examples/ensemble_regression.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,9 @@
1-
import numpy as np
21
import matplotlib.pyplot as plt
3-
from sklearn.gaussian_process import GaussianProcessRegressor
4-
from sklearn.gaussian_process.kernels import WhiteKernel, RBF
5-
from modAL.models import ActiveLearner, CommitteeRegressor
2+
import numpy as np
63
from modAL.disagreement import max_std_sampling
4+
from modAL.models import ActiveLearner, CommitteeRegressor
5+
from sklearn.gaussian_process import GaussianProcessRegressor
6+
from sklearn.gaussian_process.kernels import RBF, WhiteKernel
77

88
# generating the data
99
X = np.concatenate((np.random.rand(100)-1, np.random.rand(100)))

examples/information_density.py

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,4 @@
11
import matplotlib.pyplot as plt
2-
32
from modAL.density import information_density
43
from sklearn.datasets import make_blobs
54

examples/keras_integration.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -6,8 +6,8 @@
66
import keras
77
import numpy as np
88
from keras.datasets import mnist
9+
from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D
910
from keras.models import Sequential
10-
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D
1111
from keras.wrappers.scikit_learn import KerasClassifier
1212
from modAL.models import ActiveLearner
1313

examples/multilabel_svm.py

Lines changed: 2 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,7 @@
1-
import numpy as np
21
import matplotlib.pyplot as plt
3-
2+
import numpy as np
43
from modAL.models import ActiveLearner
54
from modAL.multilabel import *
6-
75
from sklearn.multiclass import OneVsRestClassifier
86
from sklearn.svm import SVC
97

@@ -33,4 +31,4 @@
3331
)
3432

3533
query_idx, query_inst = learner.query(X_pool)
36-
learner.teach(X_pool[query_idx], y_pool[query_idx])
34+
learner.teach(X_pool[query_idx], y_pool[query_idx])

examples/pool-based_sampling.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -4,12 +4,12 @@
44
For its scikit-learn interface, see http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html
55
"""
66

7-
import numpy as np
87
import matplotlib.pyplot as plt
9-
from sklearn.decomposition import PCA
8+
import numpy as np
9+
from modAL.models import ActiveLearner
1010
from sklearn.datasets import load_iris
11+
from sklearn.decomposition import PCA
1112
from sklearn.neighbors import KNeighborsClassifier
12-
from modAL.models import ActiveLearner
1313

1414
# loading the iris dataset
1515
iris = load_iris()
@@ -65,4 +65,4 @@
6565
prediction = learner.predict(iris['data'])
6666
plt.scatter(x=pca[:, 0], y=pca[:, 1], c=prediction, cmap='viridis', s=50)
6767
plt.title('Classification accuracy after %i queries: %f' % (n_queries, learner.score(iris['data'], iris['target'])))
68-
plt.show()
68+
plt.show()

examples/pytorch_integration.py

Lines changed: 4 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -4,16 +4,14 @@
44
For more info, see https://skorch.readthedocs.io/en/stable/
55
"""
66

7-
import torch
87
import numpy as np
9-
8+
import torch
9+
from modAL.models import ActiveLearner
10+
from skorch import NeuralNetClassifier
1011
from torch import nn
1112
from torch.utils.data import DataLoader
12-
from torchvision.transforms import ToTensor
1313
from torchvision.datasets import MNIST
14-
from skorch import NeuralNetClassifier
15-
16-
from modAL.models import ActiveLearner
14+
from torchvision.transforms import ToTensor
1715

1816

1917
# build class for the skorch API

examples/pytorch_mc_dropout.py

Lines changed: 7 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -2,21 +2,17 @@
22
In this file the basic ModAL PyTorch DeepActiveLearner workflow is explained
33
through an example on the MNIST dataset and the MC-Dropout-Bald query strategy.
44
"""
5-
import sys
6-
import os
5+
import numpy as np
76
import torch
8-
from torch import nn
9-
from skorch import NeuralNetClassifier
10-
11-
from modAL.models import DeepActiveLearner
12-
137
# import of query strategies
14-
from modAL.dropout import mc_dropout_bald, mc_dropout_mean_st
15-
16-
import numpy as np
8+
from modAL.dropout import mc_dropout_bald
9+
from modAL.models import DeepActiveLearner
10+
from skorch import NeuralNetClassifier
11+
from torch import nn
1712
from torch.utils.data import DataLoader
18-
from torchvision.transforms import ToTensor
1913
from torchvision.datasets import MNIST
14+
from torchvision.transforms import ToTensor
15+
2016

2117
# Standard Pytorch Model (Visit the PyTorch documentation for more details)
2218
class Torch_Model(nn.Module):

examples/query_by_committee.py

Lines changed: 5 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,10 +1,11 @@
1-
import numpy as np
2-
import matplotlib.pyplot as plt
31
from copy import deepcopy
4-
from sklearn.decomposition import PCA
2+
3+
import matplotlib.pyplot as plt
4+
import numpy as np
5+
from modAL.models import ActiveLearner, Committee
56
from sklearn.datasets import load_iris
7+
from sklearn.decomposition import PCA
68
from sklearn.ensemble import RandomForestClassifier
7-
from modAL.models import ActiveLearner, Committee
89

910
# loading the iris dataset
1011
iris = load_iris()

examples/ranked_batch_mode.py

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -1,13 +1,13 @@
1-
import numpy as np
1+
from functools import partial
2+
23
import matplotlib as mpl
34
import matplotlib.pyplot as plt
5+
import numpy as np
6+
from modAL.batch import uncertainty_batch_sampling
7+
from modAL.models import ActiveLearner
48
from sklearn.datasets import load_iris
59
from sklearn.decomposition import PCA
610
from sklearn.neighbors import KNeighborsClassifier
7-
from functools import partial
8-
9-
from modAL.batch import uncertainty_batch_sampling
10-
from modAL.models import ActiveLearner
1111

1212
# Set our RNG for reproducibility.
1313
RANDOM_STATE_SEED = 123
@@ -161,4 +161,4 @@
161161
))
162162
ax.legend(loc='lower right')
163163

164-
plt.show()
164+
plt.show()

examples/runtime_comparison.py

Lines changed: 8 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -1,25 +1,20 @@
1-
import numpy as np
2-
31
from time import time
42

5-
from sklearn.datasets import load_iris
6-
3+
import numpy as np
74
from acton.acton import main as acton_main
8-
9-
from alp.active_learning.active_learning import ActiveLearner as ActiveLearnerALP
10-
5+
from alp.active_learning.active_learning import \
6+
ActiveLearner as ActiveLearnerALP
117
from libact.base.dataset import Dataset
128
from libact.labelers import IdealLabeler
13-
from libact.query_strategies import UncertaintySampling, QueryByCommittee
9+
from libact.models.logistic_regression import \
10+
LogisticRegression as LogisticRegressionLibact
11+
from libact.query_strategies import QueryByCommittee, UncertaintySampling
1412
from libact.query_strategies.multiclass.expected_error_reduction import EER
15-
from libact.models.logistic_regression import LogisticRegression as LogisticRegressionLibact
16-
17-
from modAL.models import ActiveLearner, Committee
1813
from modAL.expected_error import expected_error_reduction
19-
14+
from modAL.models import ActiveLearner, Committee
15+
from sklearn.datasets import load_iris
2016
from sklearn.linear_model import LogisticRegression
2117

22-
2318
runtime = {}
2419

2520

examples/shape_learning.py

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -5,11 +5,12 @@
55
the scikit-learn implementation of the kNN classifier algorithm.
66
"""
77

8-
import numpy as np
9-
import matplotlib.pyplot as plt
108
from copy import deepcopy
11-
from sklearn.ensemble import RandomForestClassifier
9+
10+
import matplotlib.pyplot as plt
11+
import numpy as np
1212
from modAL.models import ActiveLearner
13+
from sklearn.ensemble import RandomForestClassifier
1314

1415
# creating the image
1516
im_width = 500

examples/sklearn_workflow.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,9 @@
11
from modAL.models import ActiveLearner
2-
from sklearn.ensemble import RandomForestClassifier
32
from sklearn.datasets import load_iris
3+
from sklearn.ensemble import RandomForestClassifier
44
from sklearn.model_selection import cross_val_score
55

66
X_train, y_train = load_iris().data, load_iris().target
77

88
learner = ActiveLearner(estimator=RandomForestClassifier())
9-
scores = cross_val_score(learner, X_train, y_train, cv=10)
9+
scores = cross_val_score(learner, X_train, y_train, cv=10)

examples/stream-based_sampling.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -2,11 +2,11 @@
22
In this example the use of ActiveLearner is demonstrated in a stream-based sampling setting.
33
"""
44

5-
import numpy as np
65
import matplotlib.pyplot as plt
7-
from sklearn.ensemble import RandomForestClassifier
6+
import numpy as np
87
from modAL.models import ActiveLearner
98
from modAL.uncertainty import classifier_uncertainty
9+
from sklearn.ensemble import RandomForestClassifier
1010

1111
# creating the image
1212
im_width = 500

modAL/__init__.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,3 @@
11
from .models import ActiveLearner, Committee, CommitteeRegressor
22

3-
__all__ = ['ActiveLearner', 'Committee', 'CommitteeRegressor']
3+
__all__ = ['ActiveLearner', 'Committee', 'CommitteeRegressor']

modAL/acquisition.py

Lines changed: 3 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,16 +1,15 @@
11
"""
22
Acquisition functions for Bayesian optimization.
33
"""
4-
from typing import Tuple
54

65
import numpy as np
7-
from scipy.stats import norm
86
from scipy.special import ndtr
7+
from scipy.stats import norm
98
from sklearn.exceptions import NotFittedError
109

11-
from modAL.utils.selection import multi_argmax
12-
from modAL.utils.data import modALinput
1310
from modAL.models.base import BaseLearner
11+
from modAL.utils.data import modALinput
12+
from modAL.utils.selection import multi_argmax
1413

1514

1615
def PI(mean, std, max_val, tradeoff):

modAL/batch.py

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -6,11 +6,12 @@
66

77
import numpy as np
88
import scipy.sparse as sp
9-
from sklearn.metrics.pairwise import pairwise_distances, pairwise_distances_argmin_min
9+
from sklearn.metrics.pairwise import (pairwise_distances,
10+
pairwise_distances_argmin_min)
1011

11-
from modAL.utils.data import data_vstack, modALinput, data_shape
1212
from modAL.models.base import BaseCommittee, BaseLearner
1313
from modAL.uncertainty import classifier_uncertainty
14+
from modAL.utils.data import data_shape, data_vstack, modALinput
1415

1516

1617
def select_cold_start_instance(X: modALinput,

0 commit comments

Comments
 (0)