-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathbatch_infer.py
230 lines (192 loc) · 8.6 KB
/
batch_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import importlib
import pathlib
from csv import DictReader, DictWriter
from typing import List
import click
import librosa
import tqdm
import yaml
import inference
from utils.config_utils import print_config
from utils.slicer2 import Slicer
task_inference_mapping = {
'training.MIDIExtractionTask': 'inference.MIDIExtractionInference',
'training.QuantizedMIDIExtractionTask': 'inference.QuantizedMIDIExtractionInference',
}
def model_init(model_path):
model_path = pathlib.Path(model_path)
with open(model_path.with_name('config.yaml'), 'r', encoding='utf8') as f:
config = yaml.safe_load(f)
print_config(config)
infer_cls = task_inference_mapping[config['task_cls']]
pkg = ".".join(infer_cls.split(".")[:-1])
cls_name = infer_cls.split(".")[-1]
infer_cls = getattr(importlib.import_module(pkg), cls_name)
assert issubclass(infer_cls, inference.BaseInference), \
f'Binarizer class {infer_cls} is not a subclass of {inference.BaseInference}.'
model = infer_cls(config=config, model_path=model_path)
return model, config
def calc_seq(note_midi, note_rest):
midi_num = round(note_midi, 0)
cent = int(round(note_midi - midi_num, 2) * 100)
if cent > 0:
cent = f"+{cent}"
elif cent == 0:
cent = ""
seq = f"{librosa.midi_to_note(midi_num, unicode=False)}{cent}"
return seq if not note_rest else 'rest'
def infer(wav, infer_ins, config):
wav_path = pathlib.Path(wav)
waveform, _ = librosa.load(wav_path, sr=config['audio_sample_rate'], mono=True)
slicer = Slicer(sr=config['audio_sample_rate'], max_sil_kept=1000)
chunks = slicer.slice(waveform)
midis = infer_ins.infer([c['waveform'] for c in chunks])
res: list = []
for offset, segment in zip([c['offset'] for c in chunks], midis):
offset = round(offset, 6)
note_midi = segment['note_midi'].tolist()
# tempo = 120
note_dur = segment['note_dur'].tolist()
note_rest = segment['note_rest'].tolist()
assert len(note_midi) == len(note_dur) == len(note_rest)
last_time = 0
for mid, dur, rest in zip(note_midi, note_dur, note_rest):
dur = round(dur, 6)
last_time = round(last_time, 6)
seq = calc_seq(mid, rest)
midi_info: dict = {
'start_time': round(offset + last_time, 6),
'end_time': round(offset + last_time + dur, 6),
'note_seq': seq
}
if res:
if midi_info['start_time'] < res[-1]['end_time']:
midi_info['start_time'] = res[-1]['end_time']
midi_info['note_dur'] = round(midi_info['end_time'] - midi_info['start_time'], 6)
res.append(midi_info)
last_time += dur
return res
def get_word_durs(ph_durs, ph_nums):
res = []
cur = 0
s_time = 0
for num_phonemes in ph_nums:
word_dur = round(sum(ph_durs[cur:cur + num_phonemes]), 6)
ed_time = s_time + word_dur
res.append((round(s_time, 6), round(ed_time, 6)))
cur += num_phonemes
s_time += word_dur
return res
def midi_align(midi_res, midi_durs, tolerance=0.05):
res = []
bound = [x[0] for x in midi_durs] + [midi_durs[-1][1]]
for mid in midi_res:
for i in range(len(bound)):
if bound[i] - tolerance <= mid['start_time'] <= bound[i] + tolerance:
mid['start_time'] = bound[i]
if bound[i] - tolerance <= mid['end_time'] <= bound[i] + tolerance:
mid['end_time'] = bound[i]
mid['note_dur'] = round(mid['end_time'] - mid['start_time'], 6)
if mid['note_dur'] > 0:
res.append(mid)
return res
def get_all_overlap_midis(interval, segments):
res = []
for segment in segments:
if interval[0] < segment['start_time'] < interval[1]:
res.append(segment)
elif interval[0] < segment['end_time'] < interval[1]:
res.append(segment)
elif segment['start_time'] <= interval[0] and interval[1] <= segment['end_time']:
res.append(segment)
return res
def get_max_overlap_midi(interval, segments):
matching_segment = 'rest'
max_overlap = 0
for segment in segments:
overlap = max(0, min(interval[1], segment['end_time']) - max(interval[0], segment['start_time']))
if overlap > max_overlap:
max_overlap = overlap
matching_segment = segment['note_seq']
return matching_segment
@click.command(help='Batch inference on existing DiffSinger dataset.')
@click.option(
'--dataset', required=True, metavar='RAW_DATA_DIR',
help='Path to the dataset directory. Equivalent to \'raw_data_dir\' in DiffSinger configuration files.'
)
@click.option('--model', required=True, metavar='CKPT_PATH', help='Path to the model checkpoint (*.ckpt)')
@click.option('--round_midi', is_flag=True, help='Round MIDI values to integers')
@click.option(
'--csv', required=False, metavar='CSV_PATH',
help='Path to the output transcriptions.csv file (default to the same file in the dataset)'
)
@click.option('--overwrite', is_flag=True, help='Overwrite the existing transcriptions.csv file')
def batch_infer(dataset, model, round_midi, csv, overwrite):
data_path = pathlib.Path(dataset)
model_path = pathlib.Path(model)
csv_path = pathlib.Path(csv) if csv is not None else data_path / 'transcriptions.csv'
if csv_path.exists() and not overwrite:
raise FileExistsError(f'The CSV path \'{csv_path}\' already exists. Please re-try with --overwrite option.')
infer_ins, config = model_init(model_path)
# count = 0
csv_data: List[dict] = []
with open(f'{data_path}/transcriptions.csv', 'r', encoding='utf8', newline='') as f:
reader = DictReader(f)
for row in reader:
csv_data.append(row)
for row in tqdm.tqdm(csv_data):
audio_path = data_path / 'wavs' / f"{row['name']}.wav"
if not audio_path.exists():
print(f'WARNING: audio file does not exist: \'{audio_path}\'')
continue
# print(f"\r\n{audio_path}: start")
result = infer(audio_path, infer_ins, config)
ph_dur = [round(float(x), 6) for x in row['ph_dur'].split(" ")]
ph_num = [int(x) for x in row['ph_num'].split(" ")]
note_seq = []
note_dur = []
midi_dur_list = get_word_durs(ph_dur, ph_num)
result = midi_align(result, midi_dur_list)
for (start_time, end_time) in midi_dur_list:
word_duration = round(end_time - start_time, 6)
if round_midi:
match_seq = get_max_overlap_midi((start_time, end_time), result)
note_seq.append(match_seq)
note_dur.append(word_duration)
else:
temp_seq = []
temp_dur = []
match_midi = get_all_overlap_midis((start_time, end_time), result)
for midi in match_midi:
if midi['start_time'] <= start_time:
temp_seq.append(midi['note_seq'])
midi_dur = round(min(end_time, midi['end_time']) - start_time, 6)
elif midi['end_time'] >= end_time:
temp_seq.append(midi['note_seq'])
midi_dur = round(end_time - max(start_time, midi['start_time']), 6)
elif midi['start_time'] <= start_time and midi['end_time'] >= end_time:
temp_seq.append(midi['note_seq'])
midi_dur = word_duration
else:
temp_seq.append(midi['note_seq'])
midi_dur = round(midi['note_dur'], 6)
temp_dur.append(midi_dur)
if not match_midi:
temp_seq.append('rest')
temp_dur.append(word_duration)
if round(sum(temp_dur), 6) < word_duration:
temp_seq.append('rest')
temp_dur.append(word_duration - round(sum(temp_dur), 6))
note_seq.extend(temp_seq)
note_dur.extend(temp_dur)
assert len(note_seq) == len(note_dur)
row['note_seq'] = " ".join([str(x) for x in note_seq])
row['note_dur'] = " ".join([str(round(x, 6)) for x in note_dur])
# print(f" {audio_path}:\r\nnote_seq: {note_seq}\r\nnote_dur: {note_dur}")
# count += 1
with open(csv_path, 'w', encoding='utf8', newline='') as f:
writer = DictWriter(f, fieldnames=['name', 'ph_seq', 'ph_dur', 'ph_num', 'note_seq', 'note_dur'])
writer.writeheader()
writer.writerows(csv_data)
if __name__ == "__main__":
batch_infer()