-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathparsegen_build_parser.cpp
1140 lines (1096 loc) · 41.8 KB
/
parsegen_build_parser.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "parsegen_build_parser.hpp"
#include <algorithm>
#include <cstdlib>
#include <fstream>
#include <iostream>
#include <map>
#include <queue>
#include "parsegen_parser_graph.hpp"
#include "parsegen_set.hpp"
#include "parsegen_std_stack.hpp"
#include "parsegen_std_vector.hpp"
namespace parsegen {
/* The LALR(1) parser construction implemented here is based on
David Pager's work:
Pager, David.
"The lane-tracing algorithm for constructing LR (k) parsers
and ways of enhancing its efficiency."
Information Sciences 12.1 (1977): 19-42.
The identifiers used in this code are consistent with the terminology
in that paper, except where we bring in FIRST set terminology, which
Pager doesn't go into detail about. */
// expand the grammar productions into marked productions
static configurations make_configs(grammar const& g) {
configurations configs;
for (int i = 0; i < isize(g.productions); ++i) {
auto& production = at(g.productions, i);
for (int j = 0; j <= isize(production.rhs); ++j) {
configs.push_back({i, j});
}
}
return configs;
}
static parser_graph get_left_hand_sides_to_start_configs(
configurations const& cs, grammar const& grammar) {
auto lhs2sc = make_graph_with_nnodes(grammar.nsymbols);
for (int c_i = 0; c_i < isize(cs); ++c_i) {
auto& c = at(cs, c_i);
if (c.dot > 0) continue;
auto p_i = c.production;
auto& p = at(grammar.productions, p_i);
add_edge(lhs2sc, p.lhs, c_i);
}
return lhs2sc;
}
struct state_compare {
using value_type = state_in_progress const*;
bool operator()(value_type const& a, value_type const& b) const {
return a->configs < b->configs;
}
};
using state_ptr_to_state_index_map = std::map<state_in_progress const*, int, state_compare>;
static void close(state_in_progress& state, configurations const& cs,
grammar const& grammar, parser_graph const& lhs2sc) {
std::queue<int> config_q;
std::set<int> config_set;
for (auto config_i : state.configs) {
config_q.push(config_i);
assert(!config_set.count(config_i));
config_set.insert(config_i);
}
while (!config_q.empty()) {
auto config_i = config_q.front();
config_q.pop();
auto& config = at(cs, config_i);
auto prod_i = config.production;
auto& prod = at(grammar.productions, prod_i);
if (config.dot == isize(prod.rhs)) continue;
auto symbol_after_dot = at(prod.rhs, config.dot);
if (is_terminal(grammar, symbol_after_dot)) continue;
for (auto sc : get_edges(lhs2sc, symbol_after_dot)) {
if (!config_set.count(sc)) {
config_set.insert(sc);
config_q.push(sc);
}
}
}
state.configs.assign(config_set.begin(), config_set.end());
}
static void emplace_back(state_in_progress_vector& sips, state_in_progress& sip) {
sips.push_back(
std::unique_ptr<state_in_progress>(new state_in_progress(std::move(sip))));
}
static void add_reduction_actions(
state_in_progress_vector& states, configurations const& cs, grammar const& grammar) {
for (auto& state_uptr : states) {
auto& state = *state_uptr;
for (auto config_i : state.configs) {
auto& config = at(cs, config_i);
auto prod_i = config.production;
auto& prod = at(grammar.productions, prod_i);
if (config.dot != isize(prod.rhs)) continue;
action_in_progress reduction;
reduction.action.kind = action::kind::reduce;
reduction.action.production = config.production;
state.actions.push_back(reduction);
}
}
}
static void set_lr0_contexts(state_in_progress_vector& states, grammar const& grammar) {
for (auto& state_uptr : states) {
auto& state = *state_uptr;
for (auto& action : state.actions) {
if (action.action.kind != action::kind::reduce) continue;
if (action.action.production == get_accept_production(grammar)) {
action.context.insert(get_end_terminal(grammar));
} else {
for (int terminal = 0; terminal < grammar.nterminals; ++terminal) {
action.context.insert(terminal);
}
}
}
}
}
static state_in_progress_vector build_lr0_parser(
configurations const& cs, grammar const& grammar, parser_graph const& lhs2sc) {
state_in_progress_vector states;
state_ptr_to_state_index_map state_ptrs2idxs;
std::queue<int> state_q;
{ /* start state */
state_in_progress start_state;
auto accept_nt = get_accept_nonterminal(grammar);
/* there should only be one start configuration for the accept symbol */
auto start_accept_config = get_edges(lhs2sc, accept_nt).front();
start_state.configs.push_back(start_accept_config);
close(start_state, cs, grammar, lhs2sc);
auto start_state_i = isize(states);
state_q.push(start_state_i);
emplace_back(states, start_state);
state_ptrs2idxs[states.back().get()] = start_state_i;
}
while (!state_q.empty()) {
auto state_i = state_q.front();
state_q.pop();
auto& state = *at(states, state_i);
std::set<int> transition_symbols;
for (auto config_i : state.configs) {
auto& config = at(cs, config_i);
auto prod_i = config.production;
auto& prod = at(grammar.productions, prod_i);
if (config.dot == isize(prod.rhs)) continue;
auto symbol_after_dot = at(prod.rhs, config.dot);
transition_symbols.insert(symbol_after_dot);
}
for (auto transition_symbol : transition_symbols) {
state_in_progress next_state;
for (auto config_i : state.configs) {
auto& config = at(cs, config_i);
auto prod_i = config.production;
auto& prod = at(grammar.productions, prod_i);
if (config.dot == isize(prod.rhs)) continue;
auto symbol_after_dot = at(prod.rhs, config.dot);
if (symbol_after_dot != transition_symbol) continue;
/* transition successor should just be the next index */
auto next_config_i = config_i + 1;
next_state.configs.push_back(next_config_i);
}
close(next_state, cs, grammar, lhs2sc);
auto it = state_ptrs2idxs.find(&next_state);
int next_state_i;
if (it == state_ptrs2idxs.end()) {
next_state_i = isize(states);
state_q.push(next_state_i);
emplace_back(states, next_state);
state_ptrs2idxs[states.back().get()] = next_state_i;
} else {
next_state_i = it->second;
}
action_in_progress transition;
transition.action.kind = action::kind::shift;
transition.action.next_state = next_state_i;
transition.context.insert(transition_symbol);
state.actions.emplace_back(std::move(transition));
}
}
add_reduction_actions(states, cs, grammar);
set_lr0_contexts(states, grammar);
return states;
}
static parser_graph get_productions_by_lhs(grammar const& grammar) {
auto nsymbols = grammar.nsymbols;
auto lhs2prods = make_graph_with_nnodes(nsymbols);
for (int prod_i = 0; prod_i < isize(grammar.productions); ++prod_i) {
auto& prod = at(grammar.productions, prod_i);
add_edge(lhs2prods, prod.lhs, prod_i);
}
return lhs2prods;
}
/* compute a graph where symbols are graph nodes, and
there exists an edge (A, B) if B appears in the RHS of
any production in which A is the LHS */
static parser_graph get_symbol_graph(
grammar const& grammar, parser_graph const& lhs2prods) {
auto nsymbols = grammar.nsymbols;
auto out = make_graph_with_nnodes(nsymbols);
for (int lhs = 0; lhs < nsymbols; ++lhs) {
std::set<int> dependees;
auto& lhs_prods = get_edges(lhs2prods, lhs);
for (auto prod_i : lhs_prods) {
auto& prod = at(grammar.productions, prod_i);
for (auto rhs_symb : prod.rhs) {
dependees.insert(rhs_symb);
}
}
at(out, lhs).assign(dependees.begin(), dependees.end());
}
return out;
}
/* the "FIRST" set, i.e. the set of 1-heads of non-null terminal descendants of
some string.
As suggested by Westley Weimer here:
https://www.cs.virginia.edu/~weimer/2008-415/reading/FirstFollowLL.pdf
we will also use the FIRST set for determining whether the string has
a null terminal descendant, indicated by the prescence of a special
FIRST_NULL symbol in the FIRST set */
enum { FIRST_NULL = -425 };
using first_set_type = std::set<int>;
static void print_set(std::set<int> const& set, grammar const& grammar) {
std::cerr << "{";
for (auto it = set.begin(); it != set.end(); ++it) {
if (it != set.begin()) std::cerr << ", ";
auto symb = *it;
if (symb == FIRST_NULL)
std::cerr << "null";
else {
auto& symb_name = at(grammar.symbol_names, symb);
if (symb_name == ",")
std::cerr << "','";
else
std::cerr << symb_name;
}
}
std::cerr << "}";
}
static first_set_type get_first_set_of_string(
std::vector<int> const& string, std::vector<first_set_type> const& first_sets) {
first_set_type out;
/* walk the string, stop when any symbol is found that doesn't
have a null terminal descendant */
int i;
for (i = 0; i < isize(string); ++i) {
auto symbol = at(string, i);
bool has_null = false;
for (auto first_symbol : at(first_sets, symbol)) {
if (first_symbol == FIRST_NULL)
has_null = true;
else
out.insert(first_symbol);
}
if (!has_null) break;
}
if (i == isize(string)) out.insert(FIRST_NULL);
return out;
}
/* figure out the FIRST sets for each non-terminal in the grammar.
I couldn't find a super-efficient way to do this, so here is a
free-for-all event-driven implementation. */
static std::vector<first_set_type> compute_first_sets(
grammar const& grammar, bool verbose) {
if (verbose) std::cerr << "computing FIRST sets...\n";
struct event {
int added_symbol;
int dependee;
};
std::queue<event> event_q;
auto nsymbols = grammar.nsymbols;
auto first_sets = make_vector<first_set_type>(nsymbols);
auto lhs2prods = get_productions_by_lhs(grammar);
for (int symbol = 0; symbol < nsymbols; ++symbol) {
if (is_terminal(grammar, symbol)) {
event_q.push({symbol, symbol});
} else {
auto& lhs_prods = get_edges(lhs2prods, symbol);
for (auto prod_i : lhs_prods) {
auto& prod = at(grammar.productions, prod_i);
if (prod.rhs.empty()) {
event_q.push({FIRST_NULL, symbol});
break;
}
}
}
}
auto dependers2dependees = get_symbol_graph(grammar, lhs2prods);
auto dependees2dependers = make_transpose(dependers2dependees);
while (!event_q.empty()) {
auto event = event_q.front();
event_q.pop();
auto added_symb = event.added_symbol;
auto dependee = event.dependee;
auto& dependee_firsts = at(first_sets, dependee);
/* hopefully we don't get too many duplicate events piled up... */
if (dependee_firsts.count(added_symb)) continue;
dependee_firsts.insert(added_symb);
auto& dependers = get_edges(dependees2dependers, dependee);
for (auto depender : dependers) {
assert(is_nonterminal(grammar, depender));
auto& prods = get_edges(lhs2prods, depender);
auto const& depender_firsts = at(first_sets, depender);
for (auto prod_i : prods) {
auto& prod = at(grammar.productions, prod_i);
auto rhs_first_set = get_first_set_of_string(prod.rhs, first_sets);
for (auto rhs_first_symb : rhs_first_set) {
if (!depender_firsts.count(rhs_first_symb)) {
event_q.push({rhs_first_symb, depender});
}
}
}
}
}
if (verbose) {
for (int symb = 0; symb < nsymbols; ++symb) {
auto& symb_name = at(grammar.symbol_names, symb);
std::cerr << "FIRST(" << symb_name << ") = {";
auto& c = at(first_sets, symb);
for (auto it = c.begin(); it != c.end(); ++it) {
if (it != c.begin()) std::cerr << ", ";
auto first_symb = *it;
if (first_symb == FIRST_NULL) {
std::cerr << "null";
} else {
auto& first_name = at(grammar.symbol_names, first_symb);
std::cerr << first_name;
}
}
std::cerr << "}\n";
}
std::cerr << '\n';
}
return first_sets;
}
state_configurations form_state_configs(state_in_progress_vector const& states) {
state_configurations out;
for (int i = 0; i < isize(states); ++i) {
auto& state = *at(states, i);
for (int j = 0; j < isize(state.configs); ++j) out.push_back({i, j});
}
return out;
}
parser_graph form_states_to_state_configs(
state_configurations const& scs, state_in_progress_vector const& states) {
auto out = make_graph_with_nnodes(size(states));
for (int i = 0; i < isize(scs); ++i) {
auto& sc = at(scs, i);
at(out, sc.state).push_back(i);
}
return out;
}
static std::string escape_dot(std::string const& s) {
std::string out;
for (auto c : s) {
if (c == '\\' || c == '|' || c == '\"' || c == '<' || c == '>') {
out.push_back('\\');
out.push_back(c);
} else if (c == '.') {
out += "\'.\'";
} else {
out.push_back(c);
}
}
return out;
}
void print_dot(std::string const& filepath, parser_in_progress const& pip) {
auto& sips = pip.states;
auto& cs = pip.configs;
auto& grammar = pip.grammar;
auto& states2scs = pip.states2state_configs;
std::cerr << "writing " << filepath << "\n\n";
std::ofstream file(filepath.c_str());
assert(file.is_open());
file << "digraph {\n";
file << "graph [\n";
file << "rankdir = \"LR\"\n";
file << "]\n";
for (int s_i = 0; s_i < isize(sips); ++s_i) {
auto& state = *at(sips, s_i);
file << s_i << " [\n";
file << "label = \"";
file << "State " << s_i << "\\l";
for (int cis_i = 0; cis_i < isize(state.configs); ++cis_i) {
auto c_i = at(state.configs, cis_i);
auto& config = at(cs, c_i);
auto& prod = at(grammar->productions, config.production);
auto sc_i = at(states2scs, s_i, cis_i);
file << sc_i << ": ";
auto lhs_name = at(grammar->symbol_names, prod.lhs);
file << escape_dot(lhs_name) << " ::= ";
for (int rhs_i = 0; rhs_i <= isize(prod.rhs); ++rhs_i) {
if (rhs_i == config.dot) file << " .";
if (rhs_i < isize(prod.rhs)) {
auto rhs_symb = at(prod.rhs, rhs_i);
auto rhs_symb_name = at(grammar->symbol_names, rhs_symb);
file << " " << escape_dot(rhs_symb_name);
}
}
if (config.dot == isize(prod.rhs)) {
file << ", \\{";
bool found = false;
for (auto& action : state.actions) {
if (action.action.kind == action::kind::reduce &&
action.action.production == config.production) {
found = true;
auto& ac = action.context;
for (auto it = ac.begin(); it != ac.end(); ++it) {
if (it != ac.begin()) file << ", ";
auto symb = *it;
auto& symb_name = at(grammar->symbol_names, symb);
file << escape_dot(symb_name);
}
}
}
if (!found) {
std::cerr << "BUG: missing reduce action in state " << s_i
<< " !!!\n";
abort();
}
file << "\\}";
}
file << "\\l";
}
file << "\"\n";
file << "shape = \"record\"\n";
file << "]\n";
for (auto& action : state.actions) {
if (action.action.kind == action::kind::shift) {
auto symb = *(action.context.begin());
auto symb_name = at(grammar->symbol_names, symb);
auto next = action.action.next_state;
file << s_i << " -> " << next << " [\n";
file << "label = \"" << escape_dot(symb_name) << "\"\n";
file << "]\n";
}
}
}
file << "}\n";
}
static parser_graph make_immediate_predecessor_graph(state_configurations const& scs,
state_in_progress_vector const& states, parser_graph const& states2scs,
configurations const& cs, grammar_ptr grammar) {
auto out = make_graph_with_nnodes(size(scs));
for (int s_i = 0; s_i < isize(states); ++s_i) {
auto& state = *at(states, s_i);
for (int cis_i = 0; cis_i < isize(state.configs); ++cis_i) {
auto config_i = at(state.configs, cis_i);
auto& config = at(cs, config_i);
auto& prod = at(grammar->productions, config.production);
auto dot = config.dot;
if (dot == isize(prod.rhs)) continue;
auto s = at(prod.rhs, dot);
if (is_terminal(*grammar, s)) continue;
for (int cis_j = 0; cis_j < isize(state.configs); ++cis_j) {
auto config_j = at(state.configs, cis_j);
auto& config2 = at(cs, config_j);
auto& prod2 = at(grammar->productions, config2.production);
if (prod2.lhs == s) {
auto sc_i = at(states2scs, s_i, cis_i);
auto sc_j = at(states2scs, s_i, cis_j);
add_edge(out, sc_j, sc_i);
}
}
}
}
return out;
}
static parser_graph find_transition_predecessors(state_configurations const& scs,
state_in_progress_vector const& states, parser_graph const& states2scs,
configurations const& cs, grammar_ptr grammar) {
auto out = make_graph_with_nnodes(size(scs));
for (int state_i = 0; state_i < isize(states); ++state_i) {
auto& state = *at(states, state_i);
for (auto& action : state.actions) {
if (action.action.kind != action::kind::shift) continue;
assert(action.context.size() == 1);
auto symbol = *(action.context.begin());
auto state_j = action.action.next_state;
auto& state2 = *at(states, state_j);
for (int cis_i = 0; cis_i < isize(state.configs); ++cis_i) {
auto config_i = at(state.configs, cis_i);
auto& config = at(cs, config_i);
for (int cis_j = 0; cis_j < isize(state2.configs); ++cis_j) {
auto config_j = at(state2.configs, cis_j);
auto& config2 = at(cs, config_j);
if (config.production == config2.production &&
config.dot + 1 == config2.dot) {
auto& prod = at(grammar->productions, config.production);
auto rhs_symbol = at(prod.rhs, config.dot);
if (rhs_symbol == symbol) {
auto sc_i = at(states2scs, state_i, cis_i);
auto sc_j = at(states2scs, state_j, cis_j);
add_edge(out, sc_j, sc_i);
}
}
}
}
}
}
return out;
}
static parser_graph make_originator_graph(state_configurations const& scs,
state_in_progress_vector const& states, parser_graph const& states2scs,
configurations const& cs, grammar_ptr grammar) {
auto out = make_graph_with_nnodes(size(scs));
auto ipg =
make_immediate_predecessor_graph(scs, states, states2scs, cs, grammar);
auto tpg = find_transition_predecessors(scs, states, states2scs, cs, grammar);
for (auto sc_i = 0; sc_i < isize(scs); ++sc_i) {
std::set<int> originators;
/* breadth-first search through the transition
precessor graph, followed by a single hop
along the immediate predecessor graph */
std::queue<int> tpq;
std::set<int> tps;
tpq.push(sc_i);
tps.insert(sc_i);
while (!tpq.empty()) {
auto tpp = tpq.front();
tpq.pop();
for (auto tpc : get_edges(tpg, tpp)) {
if (tps.count(tpc)) continue;
tpq.push(tpc);
tps.insert(tpc);
}
for (auto ip_i : get_edges(ipg, tpp)) {
originators.insert(ip_i);
}
}
at(out, sc_i).assign(originators.begin(), originators.end());
}
return out;
}
static std::vector<int> get_follow_string(int sc_addr, state_configurations const& scs,
state_in_progress_vector const& states, configurations const& cs, grammar_ptr grammar) {
auto& sc = at(scs, sc_addr);
auto& state = *at(states, sc.state);
auto config_i = at(state.configs, sc.config_in_state);
auto& config = at(cs, config_i);
auto& prod = at(grammar->productions, config.production);
auto out_size = isize(prod.rhs) - (config.dot + 1);
std::vector<int> out;
/* out_size can be negative */
if (out_size < 1) return out;
reserve(out, out_size);
for (auto i = config.dot + 1; i < isize(prod.rhs); ++i) {
out.push_back(at(prod.rhs, i));
}
return out;
}
static void print_string(std::vector<int> const& str, grammar_ptr grammar) {
std::cerr << "\"";
for (auto symb : str) {
auto& symb_name = at(grammar->symbol_names, symb);
std::cerr << symb_name;
}
std::cerr << "\"";
}
static bool has_non_null_terminal_descendant(first_set_type const& first_set) {
if (first_set.empty()) return false;
if (first_set.size() > 1) return true;
return *(first_set.begin()) != FIRST_NULL;
}
static context_type get_contexts(first_set_type first_set) {
auto it = first_set.find(FIRST_NULL);
if (it != first_set.end()) first_set.erase(it);
return first_set;
}
enum { MARKER = -433 };
enum { ZERO = -100 }; // actual zero is a valid index for us
static void print_stack(std::vector<int> const& stack) {
for (auto& symb : stack) {
if (symb == MARKER)
std::cerr << " M";
else if (symb == ZERO)
std::cerr << " Z";
else
std::cerr << " " << symb;
}
std::cerr << '\n';
}
static void move_markers(std::vector<int>& lane, int zeta_prime_addr,
int zeta_pointer, bool tests_failed) {
/* TODO: change in_lane to contain the index of that config in the lane,
not just a boolean. this would save us the search here: */
auto it = std::find_if(lane.begin(), lane.end(),
[=](int item) { return item == zeta_prime_addr; });
assert(it != lane.end());
auto loc_of_zeta_prime = int(it - lane.begin());
int r = 0;
for (int i = loc_of_zeta_prime + 1; i < zeta_pointer; ++i) {
if (at(lane, i) == MARKER) {
++r;
at(lane, i) = ZERO;
}
}
int top_addr = -1;
if (tests_failed) {
top_addr = lane.back();
lane.resize(lane.size() - 1); // pop
}
for (int i = 0; i < r; ++i) lane.push_back(MARKER);
if (tests_failed) lane.push_back(top_addr);
}
using context_types = std::vector<context_type>;
static void context_adding_routine(std::vector<int> const& lane,
int zeta_pointer, context_type& contexts_generated, context_types& contexts,
bool verbose, grammar_ptr grammar) {
if (verbose) {
std::cerr << " CONTEXT ADDING ROUTINE\n";
std::cerr << " LANE:";
print_stack(lane);
std::cerr << " $\\zeta$-POINTER = " << zeta_pointer << '\n';
}
for (int r = zeta_pointer; r >= 0 && (!contexts_generated.empty()); --r) {
auto v_r = at(lane, r);
if (verbose) std::cerr << " r = " << r << ", $v_r$ = ";
if (v_r < 0) {
if (verbose) {
if (v_r == MARKER)
std::cerr << "marker\n";
else if (v_r == ZERO)
std::cerr << "zero\n";
}
continue;
}
auto tau_r_addr = v_r;
if (verbose) {
std::cerr << "$\\tau_r$ = " << tau_r_addr << '\n';
std::cerr << " CONTEXTS_GENERATED = ";
print_set(contexts_generated, *grammar);
std::cerr << "\n CONTEXTS_$\\tau_r$ = ";
print_set(at(contexts, tau_r_addr), *grammar);
std::cerr << "\n CONTEXTS_GENERATED <- CONTEXTS_GENERATED - "
"CONTEXTS_$\\tau_r$";
}
subtract_from(contexts_generated, at(contexts, tau_r_addr));
if (verbose) {
std::cerr << "\n CONTEXTS_GENERATED = ";
print_set(contexts_generated, *grammar);
std::cerr << "\n CONTEXTS_$\\tau_r$ <- CONTEXTS_$\\tau_r$ U "
"CONTEXTS_GENERATED";
}
unite_with(at(contexts, tau_r_addr), contexts_generated);
if (verbose) {
std::cerr << "\n CONTEXTS_$\\tau_r$ = ";
print_set(at(contexts, tau_r_addr), *grammar);
std::cerr << "\n";
}
}
}
static void deal_with_tests_failed(int& num_originators_failed,
int& first_originator_failed, int zeta_prime_addr, bool& tests_failed,
std::vector<int>& lane, std::vector<bool>& in_lane, int zeta_addr,
std::vector<int>& stack, bool verbose) {
if (verbose) std::cerr << " Dealing with test failures\n";
if (num_originators_failed == 0) {
if (verbose)
std::cerr << " " << zeta_prime_addr << " is the first originator of "
<< zeta_addr << " to fail the tests\n";
first_originator_failed = zeta_prime_addr;
if (verbose)
std::cerr << " pushing " << zeta_prime_addr << " onto LANE:\n ";
lane.push_back(zeta_prime_addr);
if (verbose) print_stack(lane);
at(in_lane, zeta_prime_addr) = true;
if (verbose) std::cerr << " IN_LANE(" << zeta_prime_addr << ") <- ON\n";
tests_failed = true;
if (verbose) std::cerr << " TESTS_FAILED <- ON\n";
} else if (num_originators_failed == 1) {
if (verbose)
std::cerr << " " << zeta_prime_addr << " is the second originator of "
<< zeta_addr << " to fail the tests\n";
auto zeta_double_prime_addr = first_originator_failed;
if (verbose)
std::cerr << " the first was " << zeta_double_prime_addr << '\n';
assert(at(lane, isize(lane) - 1) == zeta_double_prime_addr);
assert(at(lane, isize(lane) - 2) == zeta_addr);
if (verbose)
std::cerr << " pop LANE, push {marker, " << zeta_double_prime_addr
<< "} onto it:\n ";
lane.resize(lane.size() - 1);
lane.push_back(MARKER);
lane.push_back(zeta_double_prime_addr);
if (verbose) print_stack(lane);
if (verbose)
std::cerr << " push {marker, " << zeta_prime_addr
<< "} onto STACK:\n ";
stack.push_back(MARKER);
stack.push_back(zeta_prime_addr);
if (verbose) print_stack(stack);
} else {
if (verbose)
std::cerr << " " << zeta_prime_addr
<< " is the third or later originator of " << zeta_addr
<< " to fail the tests\n";
if (verbose)
std::cerr << " pushing " << zeta_prime_addr << " onto STACK:\n ";
stack.push_back(zeta_prime_addr);
if (verbose) print_stack(stack);
}
++num_originators_failed;
}
static void heuristic_propagation_of_context_sets(int tau_addr,
context_types& contexts, std::vector<bool>& complete, state_configurations const& scs,
state_in_progress_vector const& states, parser_graph const& states2scs,
configurations const& cs, grammar_ptr grammar) {
auto& tau = at(scs, tau_addr);
auto& state = *at(states, tau.state);
auto config_i = at(state.configs, tau.config_in_state);
auto& config = at(cs, config_i);
if (config.dot != 0) return;
auto& prod = at(grammar->productions, config.production);
for (int cis_j = 0; cis_j < isize(state.configs); ++cis_j) {
auto config_j = at(state.configs, cis_j);
if (config_j == config_i) continue;
auto& config2 = at(cs, config_j);
if (config2.dot != 0) continue;
auto& prod2 = at(grammar->productions, config2.production);
if (prod.lhs != prod2.lhs) continue;
auto tau_prime_addr = at(states2scs, tau.state, cis_j);
at(contexts, tau_prime_addr) = at(contexts, tau_addr);
at(complete, tau_prime_addr) = true;
}
}
/* Here it is! The magical algorithm described by a flowchart in
Figure 7 of David Pager's paper. */
static void compute_context_set(int zeta_j_addr, context_types& contexts,
std::vector<bool>& complete, state_configurations const& scs,
parser_graph const& originator_graph, state_in_progress_vector const& states,
parser_graph const& states2scs, configurations const& cs,
std::vector<first_set_type> const& first_sets, grammar_ptr grammar, bool verbose) {
if (verbose)
std::cerr << "Computing context set for $\\zeta_j$ = " << zeta_j_addr
<< "...\n";
if (verbose) std::cerr << "BEGIN PROGRAM\n";
if (at(complete, zeta_j_addr)) {
if (verbose)
std::cerr << zeta_j_addr << " was already complete!\nEND PROGRAM\n\n";
return;
}
std::vector<int> stack;
// need random access, inner insert, which std::stack doesn't provide
std::vector<int> lane;
auto in_lane = make_vector<bool>(size(scs), false);
lane.push_back(zeta_j_addr);
at(in_lane, zeta_j_addr) = true;
bool tests_failed = false;
context_type contexts_generated;
if (verbose) {
std::cerr << "Initial LANE:";
print_stack(lane);
}
while (true) {
assert(!lane.empty());
auto zeta_addr = lane.back();
if (verbose) {
std::cerr << "Top of LANE is $\\zeta$ = " << zeta_addr << '\n';
}
auto zeta_pointer = isize(lane) - 1;
if (verbose) std::cerr << "$\\zeta$-POINTER <- " << zeta_pointer << '\n';
int num_originators_failed = 0;
int first_originator_failed = -1;
if (verbose) std::cerr << "DO_LOOP:\n";
/* DO_LOOP */
for (auto zeta_prime_addr : get_edges(originator_graph, zeta_addr)) {
if (verbose) {
std::cerr << "Next originator of $\\zeta$ = " << zeta_addr
<< " is $\\zeta'$ = " << zeta_prime_addr << '\n';
}
auto gamma = get_follow_string(zeta_prime_addr, scs, states, cs, grammar);
if (verbose) {
std::cerr << " FOLLOW string of $\\zeta'$ = " << zeta_prime_addr
<< " is ";
print_string(gamma, grammar);
std::cerr << '\n';
}
auto gamma_first = get_first_set_of_string(gamma, first_sets);
if (verbose) {
std::cerr << " FIRST set of ";
print_string(gamma, grammar);
std::cerr << " is ";
print_set(gamma_first, *grammar);
std::cerr << "\n";
}
if (has_non_null_terminal_descendant(gamma_first)) { // test A
if (verbose) {
std::cerr << " ";
print_string(gamma, grammar);
std::cerr << " has a non-null terminal descendant\n";
}
contexts_generated = get_contexts(gamma_first);
if (verbose) {
std::cerr << " CONTEXTS_GENERATED = ";
print_set(contexts_generated, *grammar);
std::cerr << " = 1-heads of non-null descendants of ";
print_string(gamma, grammar);
std::cerr << '\n';
}
if (gamma_first.count(FIRST_NULL)) {
if (verbose) {
std::cerr << " ";
print_string(gamma, grammar);
std::cerr << " has a null terminal descendant\n";
}
if (at(complete, zeta_prime_addr)) {
unite_with(contexts_generated, at(contexts, zeta_prime_addr));
context_adding_routine(lane, zeta_pointer, contexts_generated,
contexts, verbose, grammar);
} else if (!at(in_lane, zeta_prime_addr)) {
context_adding_routine(lane, zeta_pointer, contexts_generated,
contexts, verbose, grammar);
/* TRACE_FURTHER */
deal_with_tests_failed(num_originators_failed,
first_originator_failed, zeta_prime_addr, tests_failed, lane,
in_lane, zeta_addr, stack, verbose);
} else {
std::cerr << "ERROR: grammar is ambiguous.\n";
abort();
}
} else {
context_adding_routine(lane, zeta_pointer, contexts_generated,
contexts, verbose, grammar);
}
} else {
if (verbose) {
std::cerr << " ";
print_string(gamma, grammar);
std::cerr << " does not have a non-null terminal descendant\n";
}
if (at(complete, zeta_prime_addr)) { // test B
if (verbose)
std::cerr << " COMPLETE(" << zeta_prime_addr << ") is ON\n";
contexts_generated = at(contexts, zeta_prime_addr);
context_adding_routine(lane, zeta_pointer, contexts_generated,
contexts, verbose, grammar);
} else {
if (verbose)
std::cerr << " COMPLETE(" << zeta_prime_addr << ") is OFF\n";
if (at(in_lane, zeta_prime_addr)) { // test C
if (verbose)
std::cerr << " IN_LANE(" << zeta_prime_addr << ") is ON\n";
move_markers(lane, zeta_prime_addr, zeta_pointer, tests_failed);
contexts_generated = at(contexts, zeta_prime_addr);
context_adding_routine(lane, zeta_pointer, contexts_generated,
contexts, verbose, grammar);
} else {
if (verbose)
std::cerr << " IN_LANE(" << zeta_prime_addr << ") is OFF\n";
deal_with_tests_failed(num_originators_failed,
first_originator_failed, zeta_prime_addr, tests_failed, lane,
in_lane, zeta_addr, stack, verbose);
}
}
}
} /* END DO_LOOP */
if (verbose) std::cerr << "END DO_LOOP\n";
if (tests_failed) {
if (verbose) {
std::cerr << " TESTS_FAILED was on, turning it off and going to next "
"configuration\n";
}
tests_failed = false;
continue;
}
bool keep_lane_popping = true;
if (verbose) std::cerr << " Start LANE popping\n";
while (keep_lane_popping) { // LANE popping loop
assert(!lane.empty());
if (verbose) {
std::cerr << " LANE:";
print_stack(lane);
}
if (at(lane, isize(lane) - 1) == MARKER) {
if (verbose) std::cerr << " Top of LANE is a marker\n";
if (verbose) std::cerr << " Start STACK popping\n";
while (true) { // STACK popping loop
assert(!stack.empty());
if (verbose) {
std::cerr << " STACK:";
print_stack(stack);
std::cerr << " LANE:";
print_stack(lane);
}
if (stack.back() == MARKER) {
if (verbose)
std::cerr << " Top of STACK is a marker, pop STACK and LANE\n";
resize(stack, isize(stack) - 1);
resize(lane, isize(lane) - 1);
break; // out of STACK popping, back into LANE popping
} else if (at(complete, stack.back())) {
if (verbose)
std::cerr << " Top of STACK is has COMPLETE flag, pop STACK\n";
resize(stack, isize(stack) - 1);
// back into STACK popping
} else {
auto addr = stack.back();
if (verbose)
std::cerr << " Top of STACK is " << addr << ", pop STACK\n";
resize(stack, isize(stack) - 1);
if (verbose) std::cerr << " Push " << addr << " onto LANE\n";
lane.push_back(addr);
if (verbose) std::cerr << " IN_LANE(" << addr << ") <- ON\n";
at(in_lane, addr) = true;
keep_lane_popping = false;
break; // out of STACK and LANE popping, into top-level loop
} // end STACK top checks
} // end STACK popping loop
} else if (at(lane, isize(lane) - 1) == ZERO) {
if (verbose) std::cerr << " Top of LANE is a zero\n";
if (verbose) std::cerr << " Pop LANE\n";
resize(lane, isize(lane) - 1); // pop LANE
// back to top of LANE popping loop
} else { // top of LANE neither marker nor zero
auto tau_addr = lane.back();
if (verbose)
std::cerr << " Top of LANE is $\\tau$ = " << tau_addr << "\n";
at(in_lane, tau_addr) = false;
if (verbose) std::cerr << " IN_LANE(" << tau_addr << ") <- OFF\n";
at(complete, tau_addr) = true;
if (verbose) std::cerr << " COMPLETE(" << tau_addr << ") <- ON\n";
if (verbose) std::cerr << " HEURISTIC PROPAGATION OF CONTEXT SETS\n";
heuristic_propagation_of_context_sets(
tau_addr, contexts, complete, scs, states, states2scs, cs, grammar);
if (size(lane) == 1 && at(lane, 0) == zeta_j_addr) {
if (verbose) std::cerr << "END PROGRAM\n\n";
return;
}
if (verbose) std::cerr << " Pop LANE\n";
resize(lane, isize(lane) - 1); // pop LANE
// back to top of LANE popping loop
} // end top of LANE checks
} // end LANE popping loop
} // end top-level while(1) loop
}
static std::vector<bool> determine_adequate_states(
state_in_progress_vector const& states, grammar_ptr grammar, bool verbose) {
auto out = make_vector<bool>(size(states));
for (int s_i = 0; s_i < isize(states); ++s_i) {
auto& state = *at(states, s_i);
bool state_is_adequate = true;
for (int a_i = 0; a_i < isize(state.actions); ++a_i) {
auto& action = at(state.actions, a_i);
if (action.action.kind == action::kind::shift &&
is_nonterminal(*grammar, *(action.context.begin()))) {
continue;
}
for (int a_j = a_i + 1; a_j < isize(state.actions); ++a_j) {
auto& action2 = at(state.actions, a_j);
if (action2.action.kind == action::kind::shift &&
is_nonterminal(*grammar, *(action2.context.begin()))) {
continue;
}
if (intersects(action2.context, action.context)) {
if (verbose) {
auto* ap1 = &action;
auto* ap2 = &action2;
if (ap1->action.kind == action::kind::shift) {
std::swap(ap1, ap2);
}
assert(ap1->action.kind == action::kind::reduce);
std::cerr << "shift-reduce conflict in state " << s_i << ":\n";
std::cerr << "reduce ";
auto& prod = at(grammar->productions, ap1->action.production);