Description
`%matplotlib widget
import matplotlib.pyplot as plt
from ipywidgets import Output
from plt_overfit import overfit_example, output
plt.style.use('./deeplearning.mplstyle')
plt.close("all")
display(output)
ofit = overfit_example(False)`
error message:
`InvalidParameterError Traceback (most recent call last)
File D:\Python\Lib\site-packages\ipywidgets\widgets\widget_output.py:103, in Output.capture..capture_decorator..inner(*args, **kwargs)
101 self.clear_output(*clear_args, **clear_kwargs)
102 with self:
--> 103 return func(*args, **kwargs)
File D:\ppt\jupyter数据处理\week3\Optional Labs\plt_overfit.py:323, in overfit_example.fitdata_clicked(self, event)
320 @output.capture() # debug
321 def fitdata_clicked(self,event):
322 if self.logistic:
--> 323 self.logistic_regression()
324 else:
325 self.linear_regression()
File D:\ppt\jupyter数据处理\week3\Optional Labs\plt_overfit.py:365, in overfit_example.logistic_regression(self)
362 C = 1/self.lambda_
363 lr = LogisticRegression(C=C, max_iter=10000)
--> 365 lr.fit(self.X_mapped_scaled,self.y)
366 #print(lr.score(self.X_mapped_scaled, self.y))
367 self.w = lr.coef_.reshape(-1,)
File D:\Python\Lib\site-packages\sklearn\base.py:1467, in _fit_context..decorator..wrapper(estimator, *args, **kwargs)
1462 partial_fit_and_fitted = (
1463 fit_method.name == "partial_fit" and _is_fitted(estimator)
1464 )
1466 if not global_skip_validation and not partial_fit_and_fitted:
-> 1467 estimator._validate_params()
1469 with config_context(
1470 skip_parameter_validation=(
1471 prefer_skip_nested_validation or global_skip_validation
1472 )
1473 ):
1474 return fit_method(estimator, *args, **kwargs)
File D:\Python\Lib\site-packages\sklearn\base.py:666, in BaseEstimator._validate_params(self)
658 def _validate_params(self):
659 """Validate types and values of constructor parameters
660
661 The expected type and values must be defined in the _parameter_constraints
(...)
664 accepted constraints.
665 """
--> 666 validate_parameter_constraints(
667 self._parameter_constraints,
668 self.get_params(deep=False),
669 caller_name=self.class.name,
670 )
File D:\Python\Lib\site-packages\sklearn\utils_param_validation.py:95, in validate_parameter_constraints(parameter_constraints, params, caller_name)
89 else:
90 constraints_str = (
91 f"{', '.join([str(c) for c in constraints[:-1]])} or"
92 f" {constraints[-1]}"
93 )
---> 95 raise InvalidParameterError(
96 f"The {param_name!r} parameter of {caller_name} must be"
97 f" {constraints_str}. Got {param_val!r} instead."
98 )
InvalidParameterError: The 'penalty' parameter of LogisticRegression must be a str among {'l1', 'l2', 'elasticnet'} or None. Got 'none' instead.`