-
Notifications
You must be signed in to change notification settings - Fork 121
/
Copy pathmst.go
307 lines (273 loc) · 8.26 KB
/
mst.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
package graph
import (
"github.com/shady831213/algorithms/heap"
"github.com/shady831213/algorithms/tree/disjointSetTree"
"math"
"sort"
)
func mstKruskal(g weightedGraph) weightedGraph {
t := newWeightedGraph()
dfsForest := dfs(g, nil)
edges := append(dfsForest.AllTreeEdges(), dfsForest.AllForwardEdges()...)
verticesSet := make(map[interface{}]*disjointSetTree.DisjointSet)
sort.Slice(edges, func(i, j int) bool {
return g.Weight(edge{edges[i].Start.(*dfsElement).V, edges[i].End.(*dfsElement).V}) <
g.Weight(edge{edges[j].Start.(*dfsElement).V, edges[j].End.(*dfsElement).V})
})
for _, e := range edges {
if _, ok := verticesSet[e.Start]; !ok {
verticesSet[e.Start] = disjointSetTree.MakeSet(e.Start)
}
if _, ok := verticesSet[e.End]; !ok {
verticesSet[e.End] = disjointSetTree.MakeSet(e.End)
}
if disjointSetTree.FindSet(verticesSet[e.Start]) != disjointSetTree.FindSet(verticesSet[e.End]) {
edge := edge{e.Start.(*dfsElement).V, e.End.(*dfsElement).V}
t.AddEdgeWithWeightBi(edge, g.Weight(edge))
disjointSetTree.Union(verticesSet[e.Start], verticesSet[e.End])
}
}
return t
}
type mstElement struct {
p *mstElement
pqElement *heap.FibHeapElement
}
func mstPrim(g weightedGraph) weightedGraph {
t := newWeightedGraph()
pq := newFibHeapKeyInt()
elements := make(map[interface{}]*heap.FibHeapElement)
p := make(map[interface{}]interface{})
for i, v := range g.AllVertices() {
if i == 0 {
pq.Insert(-1, v)
} else {
elements[v] = pq.Insert(math.MaxInt32, v)
}
}
for pq.Len() != 0 {
minElement := pq.ExtractMin()
v := minElement.Value
delete(elements, v)
iter := g.IterConnectedVertices(v)
for e := iter.Value(); e != nil; e = iter.Next() {
currentEdge := edge{v, e}
if element, ok := elements[e]; ok && g.Weight(currentEdge) < element.Key.(int) {
if _, ok := p[e]; ok {
t.DeleteEdgeBi(edge{p[e], e})
}
p[e] = v
t.AddEdgeWithWeightBi(currentEdge, g.Weight(currentEdge))
pq.ModifyNode(element, g.Weight(currentEdge), element.Value)
}
}
}
return t
}
func secondaryMst(g weightedGraph) weightedGraph {
t := mstPrim(g)
//dynamic programming, use BFS to visit all the [i,j] path
maxEdge := make(map[interface{}]map[interface{}]edge)
for _, v := range t.AllVertices() {
if _, ok := maxEdge[v]; !ok {
maxEdge[v] = make(map[interface{}]edge)
}
handler := newBFSVisitHandler()
handler.EdgeHandler = func(start, end *bfsElement) {
maxEdge[v][end.V] = edge{v, end.V}
if t.Weight(maxEdge[v][end.V]) < t.Weight(maxEdge[v][start.V]) {
maxEdge[v][end.V] = maxEdge[v][start.V]
}
if _, ok := maxEdge[end.V]; !ok {
maxEdge[end.V] = make(map[interface{}]edge)
}
maxEdge[end.V][v] = edge{maxEdge[v][end.V].End, maxEdge[v][end.V].Start}
}
bfsVisit(t, v, handler)
}
//iterate all the edge and find the minimum total weight
minWeight := math.MaxInt32
var edgePair struct{ origin, replace edge }
for _, v := range g.AllVertices() {
iter := g.IterConnectedVertices(v)
for e := iter.Value(); e != nil; e = iter.Next() {
currentEdge := edge{v, e}
if !t.CheckEdge(currentEdge) {
origin := maxEdge[v][e]
t.DeleteEdgeBi(origin)
t.AddEdgeWithWeightBi(currentEdge, g.Weight(currentEdge))
if t.TotalWeight() < minWeight {
minWeight = t.TotalWeight()
edgePair = struct{ origin, replace edge }{origin, currentEdge}
}
t.DeleteEdgeBi(currentEdge)
t.AddEdgeWithWeightBi(origin, g.Weight(origin))
}
}
}
t.DeleteEdgeBi(edgePair.origin)
t.AddEdgeWithWeightBi(edgePair.replace, g.Weight(edgePair.replace))
return t
}
func reduceGraphLessWeight(g weightedGraph, origin map[edge]edge, getRoot func(interface{}) interface{}) (weightedGraph, map[edge]edge) {
//origin points to edge in origin graph
newG := newWeightedGraph()
newOrigin := make(map[edge]edge)
for _, e := range g.AllEdges() {
rootStart := getRoot(e.Start)
rootEnd := getRoot(e.End)
if rootStart != rootEnd {
newE := edge{rootStart, rootEnd}
//if start and end don't have same root
if !newG.CheckEdge(newE) {
// if the edge is not in new graph, add to new graph, use origin weight
newG.AddEdgeWithWeightBi(newE, g.Weight(e))
newOrigin[newE] = origin[e]
newOrigin[edge{newE.End, newE.Start}] = origin[edge{e.End, e.Start}]
} else if g.Weight(e) < newG.Weight(newE) {
//update new Weight which is less , and update new origin
newG.AddEdgeWithWeightBi(newE, g.Weight(e))
newOrigin[newE] = origin[e]
newOrigin[edge{newE.End, newE.Start}] = origin[edge{e.End, e.Start}]
}
}
}
return newG, newOrigin
}
func mstReduceOnce(g, t weightedGraph, origin map[edge]edge) (weightedGraph, map[edge]edge) {
//build the disjoint-sets as components by minimum weight path
set := make(map[interface{}]*disjointSetTree.DisjointSet)
mark := make(map[interface{}]bool)
for _, v := range g.AllVertices() {
if _, ok := mark[v]; !ok {
set[v] = disjointSetTree.MakeSet(v)
iter := g.IterConnectedVertices(v)
minWeight := math.MaxInt32
var minEnd interface{}
for e := iter.Value(); e != nil; e = iter.Next() {
if _, ok := set[e]; !ok {
set[e] = disjointSetTree.MakeSet(e)
}
if g.Weight(edge{v, e}) < minWeight {
minWeight = g.Weight(edge{v, e})
minEnd = e
}
}
//add minimum weight edge to sub graph and tree
t.AddEdgeWithWeightBi(origin[edge{v, minEnd}], minWeight)
//shrink
disjointSetTree.Union(set[v], set[minEnd])
mark[v] = true
mark[minEnd] = true
}
}
return reduceGraphLessWeight(g, origin, func(v interface{}) interface{} {
return disjointSetTree.FindSet(set[v]).Value
})
}
func mstReducedPrim(g weightedGraph, k int) weightedGraph {
t := newWeightedGraph()
origin := make(map[edge]edge)
for _, e := range g.AllEdges() {
origin[e] = e
}
newG := g
for i := 0; i < k; i++ {
newG, origin = mstReduceOnce(newG, t, origin)
}
newT := mstPrim(newG)
for _, e := range newT.AllEdges() {
t.AddEdgeWithWeight(origin[e], newT.Weight(origin[e]))
}
return t
}
/*
bottleNeck Spanning Tree
*/
//partitionGraph : O(E)
func partitionGraph(g weightedGraph) (g1, g2 weightedGraph) {
edges := g.AllEdges()
if len(edges) == 2 {
return g, nil
}
g1, g2 = newWeightedGraph(), newWeightedGraph()
mid, idx := len(edges)/2, 0
for end, start := len(edges)-1, 0; idx != mid; {
sanity := g.Weight(edges[end])
idx = start
for i := start; i <= end; i++ {
if g.Weight(edges[i]) < sanity {
edges[i], edges[idx] = edges[idx], edges[i]
idx++
}
}
edges[idx], edges[end] = edges[end], edges[idx]
if idx < mid {
start = idx + 1
} else {
end = idx - 1
}
}
for _, v := range g.AllVertices() {
g1.AddVertex(v)
g2.AddVertex(v)
}
for i := range edges {
if i < mid {
g1.AddEdgeWithWeight(edges[i], g.Weight(edges[i]))
} else {
g2.AddEdgeWithWeight(edges[i], g.Weight(edges[i]))
}
}
return
}
func bottleNeckSpanningTreeHandle(g, t weightedGraph, origin map[edge]edge) weightedGraph {
//partition by medium
g1, g2 := partitionGraph(g)
if g2 == nil {
for _, e := range g1.AllEdges() {
t.AddEdgeWithWeight(origin[e], g1.Weight(e))
}
return g1
}
//dfs g1
comps := make(map[interface{}]weightedGraph)
roots := make(map[interface{}]interface{})
treeEdge := newWeightedGraph()
handler := newDFSVisitHandler()
handler.TreeEdgeHandler = func(start, end *dfsElement) {
e := edge{start.V, end.V}
comps[end.FindRoot().V].AddEdgeWithWeightBi(e, g1.Weight(e))
treeEdge.AddEdgeWithWeightBi(e, g1.Weight(e))
}
handler.AfterDfsHandler = func(v *dfsElement) {
roots[v.V] = v.FindRoot().V
}
for _, v := range g1.AllVertices() {
if !handler.Elements.exist(v) {
comps[v] = newWeightedGraph()
dfsVisit(g1, v, handler)
}
}
//reclusive if all are connected
if len(comps) == 1 {
return bottleNeckSpanningTreeHandle(g1, t, origin)
}
//add comps' edges to the tree, reclusive other edges which are cross comps
for _, e := range treeEdge.AllEdges() {
t.AddEdgeWithWeight(origin[e], g.Weight(e))
}
reducedG, newOrigin := reduceGraphLessWeight(g, origin, func(v interface{}) interface{} {
return roots[v]
})
return bottleNeckSpanningTreeHandle(reducedG, t, newOrigin)
}
func bottleNeckSpanningTree(g weightedGraph) weightedGraph {
t := newWeightedGraph()
origin := make(map[edge]edge)
for _, e := range g.AllEdges() {
origin[e] = e
}
bottleNeckSpanningTreeHandle(g, t, origin)
return t
}