A comprehensive toolkit and benchmark for tabular data learning, featuring 30+ deep methods, more than 10 classical methods, and 300 diverse tabular datasets.
-
Updated
Jun 30, 2025 - Python
A comprehensive toolkit and benchmark for tabular data learning, featuring 30+ deep methods, more than 10 classical methods, and 300 diverse tabular datasets.
Ce dépôt propose des modèles FT-Transformer interprétables (ftt, ftt_plus, ftt_plus_plus, ftt_random) pour prédire et expliquer le churn client dans la banque et les télécoms, une première dans la littérature.
Add a description, image, and links to the tabular-data-deep-learning topic page so that developers can more easily learn about it.
To associate your repository with the tabular-data-deep-learning topic, visit your repo's landing page and select "manage topics."