Skip to content

ryancoleman/analysis-scripts

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

analysis-scripts

doi

Some simple scripts for analyzing lists of data, both paired & unpaired.

Input files are just lists of numbers, one per line

analyze_lists.py list1.txt list2.txt

analyze_lists_not_paired.py list1.txt list2.txt

Output is non-parametric p-values, cohen D effect size values (parametric), and statistical power.

Thinking of adding a non-parametric effect like U/n1n2 via http://core.ecu.edu/psyc/wuenschk/docs30/Nonparametric-EffectSize.docx http://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U

Would love comments on this

The p-value computation was used in:

Ryan G. Coleman, Kim A. Sharp. Shape and evolution of thermostable protein structure. Proteins: Structure, Function, and Bioinformatics. 78(2). pp. 420-433. 1 February 2010. http://dx.doi.org/10.1002/prot.22558

The p-value computation & Cohen Effect Size was used in: SAMPL4 & DOCK3. 7: lessons for automated docking procedures RG Coleman, T Sterling, DR Weiss Journal of computer-aided molecular design http://link.springer.com/article/10.1007/s10822-014-9722-6

About

Some simple scripts for analyzing lists of data, both paired & unpaired.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages