Skip to content

A collection of 500+ real-world ML & LLM system design case studies from 100+ companies. Learn how top tech firms implement GenAI in production.

License

Notifications You must be signed in to change notification settings

thomascherickal/genai-llm-ml-case-studies

Β 
Β 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

5 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸ€– GenAI & LLM System Design: 500+ Production Case Studies

GitHub stars GitHub forks GitHub issues GitHub license PRs Welcome

The largest collection of 500+ real-world Generative AI & LLM system design case studies from 130+ companies. Learn how industry leaders design, deploy, and optimize large language models and generative AI systems in production.

First published: June 14, 2023. Last updated: March 08, 2025

πŸ” Quick Navigation

πŸ“š What's Inside

This repository documents how companies build and deploy production-grade Generative AI and LLM systems, focusing on:

  • Architecture decisions for RAG, fine-tuning, and multi-modal systems
  • Scaling strategies for billion-parameter models
  • Optimization techniques for latency, cost, and performance
  • Evaluation frameworks for LLM outputs and hallucination mitigation
  • Deployment patterns across industries

Perfect for:

  • AI/ML Engineers implementing LLM-powered features
  • Engineering teams designing scalable GenAI architectures
  • Leaders planning generative AI initiatives
  • Technical interviews on LLM system design

πŸ† Featured LLM Case Studies

RAG & Knowledge Retrieval

GenAI Applications

πŸ“Š Browse by Industry

πŸ’‘ Browse by LLM/GenAI Use Cases

πŸ” Top Companies with LLM & GenAI Case Studies

πŸ“š LLM System Design Patterns

πŸ“ˆ LLM Evolution Timeline

  • 2023 Q1-Q2: First wave of RAG implementations
  • 2023 Q3-Q4: Fine-tuning becomes mainstream
  • 2024 Q1-Q2: Agent architectures emerge
  • 2024 Q3-Q4: Multi-modal systems gain traction
  • 2025 Q1: Real-time personalization with LLMs

πŸ—οΈ GenAI Architectures

RAG (Retrieval-Augmented Generation)

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                 β”‚     β”‚                 β”‚     β”‚                 β”‚
β”‚  Document       │────▢│  Vector         β”‚     β”‚                 β”‚
β”‚  Corpus         β”‚     β”‚  Database       │────▢│                 β”‚
β”‚                 β”‚     β”‚                 β”‚     β”‚   LLM           β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β”‚   Generation    β”‚
                                                β”‚                 β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”‚                 β”‚
β”‚                 β”‚     β”‚                 β”‚     β”‚                 β”‚
β”‚  User           │────▢│  Query          │────▢│                 β”‚
β”‚  Query          β”‚     β”‚  Processing     β”‚     β”‚                 β”‚
β”‚                 β”‚     β”‚                 β”‚     β”‚                 β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Fine-tuning Approaches

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                 β”‚     β”‚                 β”‚     β”‚                 β”‚
β”‚  Base LLM       │────▢│  Fine-tuning    │────▢│  Specialized    β”‚
β”‚  Model          β”‚     β”‚  Pipeline       β”‚     β”‚  Model          β”‚
β”‚                 β”‚     β”‚                 β”‚     β”‚                 β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                              β–²
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”           β”‚
β”‚                 β”‚           β”‚
β”‚  Company        β”‚β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
β”‚  Data           β”‚
β”‚                 β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Feature Store for LLMs

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                 β”‚     β”‚                 β”‚
β”‚  Real-time      │────▢│  Feature        β”‚
β”‚  Data           β”‚     β”‚  Computation    β”‚
β”‚                 β”‚     β”‚                 β”‚     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β”‚                 β”‚
                              β”‚                 β”‚                 β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”           β–Ό                 β”‚                 β”‚
β”‚                 β”‚     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”‚                 β”‚
β”‚  Batch          │────▢│  Feature        │────▢│  LLM            β”‚
β”‚  Data           β”‚     β”‚  Store          β”‚     β”‚  Application    β”‚
β”‚                 β”‚     β”‚                 β”‚     β”‚                 β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

🀝 Contributing

Contributions are welcome! Help us document the evolving GenAI landscape:

  1. Fork the repository
  2. Create a new branch
  3. Add your LLM/GenAI case study using the established format
  4. Submit a pull request

See CONTRIBUTING.md for detailed guidelines.

πŸ“„ License

This repository is licensed under the MIT License - see the LICENSE file for details.

πŸ™ Acknowledgements

  • Thanks to all the companies and engineers who shared their LLM/GenAI implementation experiences
  • All original sources are linked in each case study

⭐ Star History

Star History Chart

⭐ Found this valuable for your GenAI/LLM work? Star the repository to help others discover it! ⭐

About

A collection of 500+ real-world ML & LLM system design case studies from 100+ companies. Learn how top tech firms implement GenAI in production.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published