|
| 1 | + |
| 2 | + |
| 3 | +## Binary Search one by one |
| 4 | +#### Runtime: 61 ms, faster than 20.87% of Python3 |
| 5 | +#### Memory Usage: 15 MB, less than 35.15% of Python3 |
| 6 | +```py |
| 7 | +class Solution: |
| 8 | + def searchMatrix(self, matrix: List[List[int]], target: int) -> bool: |
| 9 | + m = len(matrix) - 1 |
| 10 | + n = len(matrix[0]) - 1 |
| 11 | + start, end = 0, m |
| 12 | + middle = m // 2 |
| 13 | + is_bound_exist = False |
| 14 | + while start <= end: |
| 15 | + print(start, middle, end) |
| 16 | + if matrix[middle][0] <= target and target <= matrix[middle][n]: |
| 17 | + matrix = matrix[middle] |
| 18 | + is_bound_exist = True |
| 19 | + break |
| 20 | + |
| 21 | + elif matrix[middle][n] < target: |
| 22 | + start = middle + 1 |
| 23 | + middle = (start + end) // 2 |
| 24 | + |
| 25 | + else: |
| 26 | + end = middle - 1 |
| 27 | + middle = (start + end) // 2 |
| 28 | + |
| 29 | + if is_bound_exist: |
| 30 | + start, end = 0, n |
| 31 | + middle = n // 2 |
| 32 | + while start <= end: |
| 33 | + if matrix[middle] == target : |
| 34 | + return True |
| 35 | + |
| 36 | + elif matrix[middle] < target: |
| 37 | + start = middle + 1 |
| 38 | + middle = (start + end) // 2 |
| 39 | + |
| 40 | + else: |
| 41 | + end = middle - 1 |
| 42 | + middle = (start + end) // 2 |
| 43 | + |
| 44 | + return False |
| 45 | + |
| 46 | +``` |
| 47 | + |
| 48 | +## Nested Binary Search |
| 49 | +#### Runtime: 58 ms, faster than 23.38% of Python3 |
| 50 | +#### Memory Usage: 14.9 MB, less than 35.15% of Python3 |
| 51 | +```py |
| 52 | +class Solution: |
| 53 | + def searchMatrix(self, matrix: List[List[int]], target: int) -> bool: |
| 54 | + m = len(matrix) - 1 |
| 55 | + n = len(matrix[0]) - 1 |
| 56 | + start, end = 0, m |
| 57 | + middle = m // 2 |
| 58 | + while start <= end: |
| 59 | + if matrix[middle][0] <= target and target <= matrix[middle][n]: |
| 60 | + matrix = matrix[middle] |
| 61 | + start, end = 0, n |
| 62 | + middle = n // 2 |
| 63 | + while start <= end: |
| 64 | + if matrix[middle] == target : |
| 65 | + return True |
| 66 | + |
| 67 | + elif matrix[middle] < target: |
| 68 | + start = middle + 1 |
| 69 | + middle = (start + end) // 2 |
| 70 | + |
| 71 | + else: |
| 72 | + end = middle - 1 |
| 73 | + middle = (start + end) // 2 |
| 74 | + return False |
| 75 | + |
| 76 | + elif matrix[middle][n] < target: |
| 77 | + start = middle + 1 |
| 78 | + middle = (start + end) // 2 |
| 79 | + |
| 80 | + else: |
| 81 | + end = middle - 1 |
| 82 | + middle = (start + end) // 2 |
| 83 | + |
| 84 | + return False |
| 85 | + |
| 86 | +``` |
| 87 | + |
| 88 | +## 2D array -> 1D and Binary search |
| 89 | +#### Runtime: 71 ms, faster than 13.03% of Python3 |
| 90 | +#### Memory Usage: 14.7 MB, less than 64.82% of Python3 |
| 91 | +```py |
| 92 | +class Solution: |
| 93 | + def searchMatrix(self, matrix: List[List[int]], target: int) -> bool: |
| 94 | + matrix = [val |
| 95 | + for sublist in matrix |
| 96 | + for val in sublist] |
| 97 | + |
| 98 | + m = len(matrix) - 1 |
| 99 | + start, end = 0, m |
| 100 | + middle = m // 2 |
| 101 | + |
| 102 | + while start <= end: |
| 103 | + if matrix[middle] == target : |
| 104 | + return True |
| 105 | + |
| 106 | + elif matrix[middle] < target: |
| 107 | + start = middle + 1 |
| 108 | + middle = (start + end) // 2 |
| 109 | + |
| 110 | + else: |
| 111 | + end = middle - 1 |
| 112 | + middle = (start + end) // 2 |
| 113 | + return False |
| 114 | +``` |
0 commit comments