forked from nRF24/RF24
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgettingStarted.cpp
168 lines (137 loc) · 5.88 KB
/
gettingStarted.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
/*
* See documentation at https://nRF24.github.io/RF24
* See License information at root directory of this library
* Author: Brendan Doherty (2bndy5)
*/
/**
* A simple example of sending data from 1 nRF24L01 transceiver to another.
*
* This example was written to be used on 2 devices acting as "nodes".
* Use the Serial Terminal to change each node's behavior.
*/
#include "pico/stdlib.h" // printf(), sleep_ms(), getchar_timeout_us(), to_us_since_boot(), get_absolute_time()
#include "pico/bootrom.h" // reset_usb_boot()
#include <tusb.h> // tud_cdc_connected()
#include <RF24.h> // RF24 radio object
#include "defaultPins.h" // board presumptive default pin numbers for CE_PIN and CSN_PIN
// instantiate an object for the nRF24L01 transceiver
RF24 radio(CE_PIN, CSN_PIN);
// Used to control whether this node is sending or receiving
bool role = false; // true = TX role, false = RX role
// For this example, we'll be using a payload containing
// a single float number that will be incremented
// on every successful transmission
float payload = 0.0;
bool setup()
{
// Let these addresses be used for the pair
uint8_t address[][6] = {"1Node", "2Node"};
// It is very helpful to think of an address as a path instead of as
// an identifying device destination
// to use different addresses on a pair of radios, we need a variable to
// uniquely identify which address this radio will use to transmit
bool radioNumber = 1; // 0 uses address[0] to transmit, 1 uses address[1] to transmit
// wait here until the CDC ACM (serial port emulation) is connected
while (!tud_cdc_connected()) {
sleep_ms(10);
}
// initialize the transceiver on the SPI bus
if (!radio.begin()) {
printf("radio hardware is not responding!!\n");
return false;
}
// print example's introductory prompt
printf("RF24/examples_pico/gettingStarted\n");
// To set the radioNumber via the Serial terminal on startup
printf("Which radio is this? Enter '0' or '1'. Defaults to '0'\n");
char input = getchar();
radioNumber = input == 49;
printf("radioNumber = %d\n", (int)radioNumber);
// Set the PA Level low to try preventing power supply related problems
// because these examples are likely run with nodes in close proximity to
// each other.
radio.setPALevel(RF24_PA_LOW); // RF24_PA_MAX is default.
// save on transmission time by setting the radio to only transmit the
// number of bytes we need to transmit a float
radio.setPayloadSize(sizeof(payload)); // float datatype occupies 4 bytes
// set the TX address of the RX node into the TX pipe
radio.openWritingPipe(address[radioNumber]); // always uses pipe 0
// set the RX address of the TX node into a RX pipe
radio.openReadingPipe(1, address[!radioNumber]); // using pipe 1
// additional setup specific to the node's role
if (role) {
radio.stopListening(); // put radio in TX mode
}
else {
radio.startListening(); // put radio in RX mode
}
// For debugging info
// radio.printDetails(); // (smaller) function that prints raw register values
// radio.printPrettyDetails(); // (larger) function that prints human readable data
// role variable is hardcoded to RX behavior, inform the user of this
printf("*** PRESS 'T' to begin transmitting to the other node\n");
return true;
} // setup
void loop()
{
if (role) {
// This device is a TX node
uint64_t start_timer = to_us_since_boot(get_absolute_time()); // start the timer
bool report = radio.write(&payload, sizeof(payload)); // transmit & save the report
uint64_t end_timer = to_us_since_boot(get_absolute_time()); // end the timer
if (report) {
// payload was delivered; print the payload sent & the timer result
printf("Transmission successful! Time to transmit = %llu us. Sent: %f\n", end_timer - start_timer, payload);
// increment float payload
payload += 0.01;
}
else {
// payload was not delivered
printf("Transmission failed or timed out\n");
}
// to make this example readable in the serial terminal
sleep_ms(1000); // slow transmissions down by 1 second
}
else {
// This device is a RX node
uint8_t pipe;
if (radio.available(&pipe)) { // is there a payload? get the pipe number that received it
uint8_t bytes = radio.getPayloadSize(); // get the size of the payload
radio.read(&payload, bytes); // fetch payload from FIFO
// print the size of the payload, the pipe number, payload's value
printf("Received %d bytes on pipe %d: %f\n", bytes, pipe, payload);
}
} // role
char input = getchar_timeout_us(0); // get char from buffer for user input
if (input != PICO_ERROR_TIMEOUT) {
// change the role via the serial terminal
if ((input == 'T' || input == 't') && !role) {
// Become the TX node
role = true;
printf("*** CHANGING TO TRANSMIT ROLE -- PRESS 'R' TO SWITCH BACK\n");
radio.stopListening();
}
else if ((input == 'R' || input == 'r') && role) {
// Become the RX node
role = false;
printf("*** CHANGING TO RECEIVE ROLE -- PRESS 'T' TO SWITCH BACK\n");
radio.startListening();
}
else if (input == 'b' || input == 'B') {
// reset to bootloader
radio.powerDown();
reset_usb_boot(0, 0);
}
}
} // loop
int main()
{
stdio_init_all(); // init necessary IO for the RP2040
while (!setup()) { // if radio.begin() failed
// hold program in infinite attempts to initialize radio
}
while (true) {
loop();
}
return 0; // we will never reach this
}