-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathcurve.py
1717 lines (1399 loc) · 63.5 KB
/
curve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import Grasshopper02 as gh
def AddArc(plane, radius, angle_degrees):
"""Adds an arc curve to the document
Parameters:
plane = plane on which the arc will lie. The origin of the plane will be
the center point of the arc. x-axis of the plane defines the 0 angle
direction.
radius = radius of the arc
angle_degrees = interval of arc
Returns:
id of the new curve object
"""
if not isinstance(plane, gh.Plane):
raise Exception("plane should be an instance of Plane")
elif not isinstance(radius, float):
raise Exception("radius should be an instance of float")
elif not isinstance(angle_degrees, float):
raise Exception("angle_degrees should be an instance of float")
else:
rc = gh.Curve('<Curve>','AddArc', plane, radius, angle_degrees, '</Curve>')
return rc
def AddArc3Pt(start, end, point_on_arc):
"""Adds a 3-point arc curve to the document
Parameters:
start, end = endpoints of the arc
point_on_arc = a point on the arc
Returns:
id of the new curve object
"""
if not (isinstance(start, gh.Point)):
raise Exception("start should be an instance of a Point")
elif not isinstance(end, gh.Point):
raise Exception("end should be an instance of a Point")
elif not isinstance(point_on_arc, gh.Point):
raise Exception("point_on_arc should be an instance of a Point")
else:
rc = gh.Curve('<Curve>','AddArc3Pt', start, end, point_on_arc, '</Curve>')
return rc
def AddArcPtTanPt(start, direction, end):
"""Adds an arc curve, created from a start point, a start direction, and an
end point, to the document
Returns:
id of the new curve object
"""
if not (isinstance(start, gh.Point)):
raise Exception("start should be an instance of a gh.Point")
elif not isinstance(end, gh.Point):
raise Exception("end should be an instance of a gh.Point")
elif not isinstance(direction, gh.Vector):
raise Exception("direction should be an instance of a gh.Vector")
else:
rc = gh.Curve('<Curve>','AddArcPtTanPt', start, direction, end, '</Curve>')
return rc
def AddBlendCurve(curves, parameters, reverses, continuities):
"""Makes a curve blend between two curves
Parameters:
curves = two curves
parameters = two curve parameters defining the blend end points
reverses = two boolean values specifying to use the natural or opposite direction of the curve
continuities = two numbers specifying continuity at end points
0 = position, 1 = tangency, 2 = curvature
Returns:
identifier of new curve on success
"""
if not isinstance(curves, list) \
or len(curves) != 2 \
or not isinstance(curves[0], gh.Curve) \
or not isinstance(curves[1], gh.Curve):
raise Exception("curves should be a list of two curves")
elif not isinstance(parameters, list) \
or len(parameters)!=2 \
or not isinstance(parameters[0], float) \
or not isinstance(parameters[1], float):
raise Exception("parameters should be a list of two floats defining the blend end points ")
elif not isinstance(reverses, list) \
or len(reverses)!= 2 \
or not isinstance(reverses[0], bool) \
or not isinstance(reverses[1], bool):
raise Exception("reverses should be a list of two boolean values specifying to use the natural or opposite direction of the curve")
elif not isinstance(continuities, list) \
or len(continuities)!= 2 \
or not isinstance(continuities[0],int) \
or not isinstance(continuities[1], int)\
or continuities[0]>2 or continuities[1]>2\
or continuities[0]<0 or continuities[1]<0 :
raise Exception("continuities should be a list of two numbers specifying continuity at end points 0 = position, 1 = tangency, 2 = curvature")
else:
rc = gh.Curve('<Curve>','AddBlendCurve', curves, parameters, reverses, continuities, '</Curve>')
return rc
def AddCircle(plane_or_center, radius):
"""Adds a circle curve to the document
Parameters:
plane_or_center = plane on which the circle will lie. If a point is
passed, this will be the center of the circle on the active
construction plane
radius = the radius of the circle
Returns:
id of the new curve object
"""
if not isinstance(plane_or_center, gh.Plane) or not isinstance(plane_or_center, gh.Point):
raise Exception("plane_or_center should be an instance of Plane")
elif not isinstance(radius, float):
raise Exception("radius should be an instance of float")
else:
rc = gh.Curve('<Curve>','AddCircle', plane_or_center, radius,'</Curve>')
return rc
def AddCircle3Pt(first, second, third):
"""Adds a 3-point circle curve to the document
Parameters:
first, second, third = points on the circle
Returns:
id of the new curve object
"""
if not (isinstance(first, gh.Point)):
raise Exception("first should be an instance of a Point")
elif not isinstance(second, gh.Point):
raise Exception("second should be an instance of a Point")
elif not isinstance(third, gh.Point):
raise Exception("third should be an instance of a Point")
else:
rc = gh.Curve('<Curve>','AddCircle3Pt', first, second, third, '</Curve>')
return rc
def AddCurve(points, degree=3):
"""Adds a control points curve object to the document
Parameters:
points = a list of points
degree[opt] = degree of the curve
Returns:
id of the new curve object
"""
if not isinstance(points, list) or not len(points)>1:
raise Exception("points should be a list of more than one point")
elif not isinstance(degree, int):
raise Exception("degree should be an int representing the degree of the curve")
else:
for i in points:
if not isinstance(i, gh.Point):
raise Exception("points should be list of points")
rc = gh.Curve('<Curve>','AddCurve', points, degree, '</Curve>')
return rc
def AddEllipse(plane, radiusX, radiusY):
"""Adds an elliptical curve to the document
Parameters:
plane = the plane on which the ellipse will lie. The origin of
the plane will be the center of the ellipse
radiusX, radiusY = radius in the X and Y axis directions
Returns:
id of the new curve object if successful
"""
if not isinstance(plane, gh.Plane):
raise Exception("plane should be an instance of Plane")
elif not isinstance(radiusX, float) or not isinstance(radiusY, float):
raise Exception("radiusX, radiusY should be floats representing radius in the X and Y axis directions")
else:
rc = gh.Curve('<Curve>','AddEllipse', plane, radiusX, radiusY, '</Curve>')
return rc
def AddEllipse3Pt(center, second, third):
"""Adds a 3-point elliptical curve to the document
Parameters:
center = center point of the ellipse
second = end point of the x axis
third = end point of the y axis
Returns:
id of the new curve object if successful
"""
if not isinstance(center, gh.Point)or not isinstance(second, gh.Point) or not isinstance(third, gh.Point):
raise Exception("center, second and third should be instances of gh.Point")
else:
rc = gh.Curve('<Curve>','AddEllipse3Pt', center, second, third, '</Curve>')
return rc
def AddFilletCurve(curve0id, curve1id, radius=1.0, base_point0=None, base_point1=None):
"""Adds a fillet curve between two curve objects
Parameters:
curve0id = identifier of the first curve object
curve1id = identifier of the second curve object
radius [opt] = fillet radius
base_point0 [opt] = base point of the first curve. If omitted,
starting point of the curve is used
base_point1 [opt] = base point of the second curve. If omitted,
starting point of the curve is used
Returns:
id of the new curve object if successful
"""
if not isinstance(curve0id, gh.Curve) or not isinstance(curve1id, gh.Curve):
raise Exception("curve0id and curve1id should be instances of gh.Curve")
elif not isinstance(radius, float):
raise Exception("radius should be a float number")
elif base_point0 != None:
if not isinstance(base_point0, gh.Point):
raise Exception("base_point0 should be an instance of gh.Point or None")
elif base_point1 != None:
if not isinstance(base_point1, gh.Point):
raise Exception("base_point1 shoule be an instance of gh.Point or None")
else:
rc = gh.Curve('<Curve>','AddFilletCurve', curve0id, curve1id, radius, base_point0, base_point1, '</Curve>')
return rc
def AddInterpCrvOnSrf(surface_id, points):
"""Adds an interpolated curve object that lies on a specified
surface. Note, this function will not create periodic curves,
but it will create closed curves.
Parameters:
surface_id = identifier of the surface to create the curve on
points = list of 3D points that lie on the specified surface.
The list must contain at least 2 points
Returns:
id of the new curve object if successful
"""
return rc
def AddInterpCrvOnSrfUV(surface_id, points):
"""Adds an interpolated curve object based on surface parameters,
that lies on a specified surface. Note, this function will not
create periodic curves, but it will create closed curves.
Parameters:
surface_id = identifier of the surface to create the curve on
points = list of 2D surface parameters. The list must contain
at least 2 sets of parameters
Returns:
id of the new curve object if successful
"""
return rc
def AddInterpCurve(points, degree=3, knotstyle=0, start_tangent=None, end_tangent=None):
"""Adds an interpolated curve object to the document. Options exist to make
a periodic curve or to specify the tangent at the endpoints. The resulting
curve is a non-rational NURBS curve of the specified degree.
Parameters:
points = list containing 3D points to interpolate. For periodic curves,
if the final point is a duplicate of the initial point, it is
ignored. The number of control points must be >= (degree+1).
degree[opt] = The degree of the curve (must be >=1).
Periodic curves must have a degree >= 2. For knotstyle = 1 or 2,
the degree must be 3. For knotstyle = 4 or 5, the degree must be odd
knotstyle[opt]
0 Uniform knots. Parameter spacing between consecutive knots is 1.0.
1 Chord length spacing. Requires degree = 3 with arrCV1 and arrCVn1 specified.
2 Sqrt (chord length). Requires degree = 3 with arrCV1 and arrCVn1 specified.
3 Periodic with uniform spacing.
4 Periodic with chord length spacing. Requires an odd degree value.
5 Periodic with sqrt (chord length) spacing. Requires an odd degree value.
start_tangent [opt] = 3d vector that specifies a tangency condition at the
beginning of the curve. If the curve is periodic, this argument must be omitted.
end_tangent [opt] = 3d vector that specifies a tangency condition at the
end of the curve. If the curve is periodic, this argument must be omitted.
Returns:
id of the new curve object if successful
"""
return rc
def AddLine(start, end):
"""Adds a line curve to the current model.
Parameters:
start, end = end points of the line
Returns:
id of the new curve object
"""
return rc
def AddNurbsCurve(points, knots, degree, weights=None):
"""Adds a NURBS curve object to the document
Parameters:
points = list containing 3D control points
knots = Knot values for the curve. The number of elements in knots must
equal the number of elements in points plus degree minus 1
degree = degree of the curve. must be greater than of equal to 1
weights[opt] = weight values for the curve. Number of elements should
equal the number of elements in points. Values must be greater than 0
"""
return rc
def AddPolyline(points, replace_id=None):
"""Adds a polyline curve to the current model
Parameters:
points = list of 3D points. Duplicate, consecutive points will be
removed. The list must contain at least two points. If the
list contains less than four points, then the first point and
last point must be different.
replace_id[opt] = If set to the id of an existing object, the object
will be replaced by this polyline
Returns:
id of the new curve object if successful
"""
return rc
def AddRectangle(plane, width, height):
"""Add a rectangular curve to the document
Paramters:
plane = plane on which the rectangle will lie
width, height = width and height of rectangle as measured along the plane's
x and y axes
Returns:
id of new rectangle
"""
return rc
def AddSpiral(point0, point1, pitch, turns, radius0, radius1=None):
"""Adds a spiral or helical curve to the document
Parameters:
point0 = helix axis start point or center of spiral
point1 = helix axis end point or point normal on spiral plane
pitch = distance between turns. If 0, then a spiral. If > 0 then the
distance between helix "threads"
turns = number of turns
radius0, radius1 = starting and ending radius
Returns:
id of new curve on success
"""
return rc
def AddSubCrv(curve_id, param0, param1):
"""Add a curve object based on a portion, or interval of an existing curve
object. Similar in operation to Rhino's SubCrv command
Parameters:
curve_id = identifier of a closed planar curve object
param0, param1 = first and second parameters on the source curve
Returns:
id of the new curve object if successful
"""
return rc
def ArcAngle(curve_id, segment_index=-1):
"""Returns the angle of an arc curve object.
Parameters:
curve_id = identifier of a curve object
segment_index [opt] = identifies the curve segment if
curve_id identifies a polycurve
Returns:
The angle in degrees if successful.
"""
return arc.AngleDegrees
def ArcCenterPoint(curve_id, segment_index=-1):
"""Returns the center point of an arc curve object
Parameters:
curve_id = identifier of a curve object
segment_index [opt] = identifies the curve segment if
curve_id identifies a polycurve
Returns:
The 3D center point of the arc if successful.
"""
return arc.Center
def ArcMidPoint(curve_id, segment_index=-1):
"""Returns the mid point of an arc curve object
Parameters:
curve_id = identifier of a curve object
segment_index [opt] = identifies the curve segment if
curve_id identifies a polycurve
Returns:
The 3D mid point of the arc if successful.
"""
return arc.MidPoint
def ArcRadius(curve_id, segment_index=-1):
"""Returns the radius of an arc curve object
Parameters:
curve_id = identifier of a curve object
segment_index [opt] = identifies the curve segment if
curve_id identifies a polycurve
Returns:
The radius of the arc if successful.
"""
return arc.Radius
#Point
def CircleCenterPoint(curve_id, segment_index=-1, return_plane=False):
"""Returns the center point of a circle curve object
Parameters:
curve_id = identifier of a curve object
segment_index [opt] = identifies the curve segment if
return_plane [opt] = if True, the circle's plane is returned
curve_id identifies a polycurve
Returns:
The 3D center point of the circle if successful.
The plane of the circle if return_plane is True
"""
return circle.Center
def CircleCircumference(curve_id, segment_index=-1):
"""Returns the circumference of a circle curve object
Parameters:
curve_id = identifier of a curve object
segment_index [opt] = identifies the curve segment if
curve_id identifies a polycurve
Returns:
The circumference of the circle if successful.
"""
return circle.Circumference
def CircleRadius(curve_id, segment_index=-1):
"""Returns the radius of a circle curve object
Parameters:
curve_id = identifier of a curve object
segment_index [opt] = identifies the curve segment if
curve_id identifies a polycurve
Returns:
The radius of the circle if successful.
"""
return circle.Radius
def CloseCurve(curve_id, tolerance=-1.0):
"""Closes an open curve object by making adjustments to the end points so
they meet at a point
Parameters:
curve_id = identifier of a curve object
tolerance[opt] = maximum allowable distance between start and end
point. If omitted, the current absolute tolerance is used
Returns:
id of the new curve object if successful
"""
return rc
def ClosedCurveOrientation(curve_id, direction=(0, 0, 1)):
"""Determine the orientation (counter-clockwise or clockwise) of a closed,
planar curve
Parameters:
curve_id = identifier of a curve object
direction[opt] = 3d vector that identifies up, or Z axs, direction of
the plane to test against
Returns:
1 if the curve's orientation is clockwise
-1 if the curve's orientation is counter-clockwise
0 if unable to compute the curve's orientation
"""
return int(orientation)
def ConvertCurveToPolyline(curve_id, angle_tolerance=5.0, tolerance=0.01, delete_input=False, min_edge_length=0,
max_edge_length=0):
"""Convert curve to a polyline curve
Parameters:
curve_id = identifier of a curve object
angle_tolerance [opt] = The maximum angle between curve tangents at line
endpoints. If omitted, the angle tolerance is set to 5.0.
tolerance[opt] = The distance tolerance at segment midpoints. If omitted,
the tolerance is set to 0.01.
delete_input[opt] = Delete the curve object specified by curve_id. If
omitted, curve_id will not be deleted.
min_edge_length[opt] = Minimum segment length
max_edge_length[opt] = Maximum segment length
Returns:
The new curve if successful.
"""
return id
#point
def CurveArcLengthPoint(curve_id, length, from_start=True):
"""Returns the point on the curve that is a specified arc length
from the start of the curve.
Parameters:
curve_id = identifier of a curve object
length = The arc length from the start of the curve to evaluate.
from_start[opt] = If not specified or True, then the arc length point is
calculated from the start of the curve. If False, the arc length
point is calculated from the end of the curve.
Returns:
Point3d if successful
"""
def CurveArea(curve_id):
"""Returns area of closed planar curves. The results are based on the
current drawing units.
Parameters:
curve_id = The identifier of a closed, planar curve object.
Returns:
List of area information. The list will contain the following information:
Element Description
0 The area. If more than one curve was specified, the
value will be the cumulative area.
1 The absolute (+/-) error bound for the area.
"""
return mp.Area, mp.AreaError
def CurveAreaCentroid(curve_id):
"""Returns area centroid of closed, planar curves. The results are based
on the current drawing units.
Parameters:
curve_id = The identifier of a closed, planar curve object.
Returns:
Tuple of area centroid information containing the following information:
Element Description
0 The 3d centroid point. If more than one curve was specified,
the value will be the cumulative area.
1 A 3d vector with the absolute (+/-) error bound for the area
centroid.
"""
return mp.Centroid, mp.CentroidError
def CurveArrows(curve_id, arrow_style=None):
"""Enables or disables a curve object's annotation arrows
Parameters:
curve_id = identifier of a curve
arrow_style[opt] = the style of annotation arrow to be displayed
0 = no arrows
1 = display arrow at start of curve
2 = display arrow at end of curve
3 = display arrow at both start and end of curve
Returns:
if arrow_style is not specified, the current annotation arrow style
if arrow_style is specified, the previos arrow style
"""
def CurveBooleanDifference(curve_id_0, curve_id_1):
"""Calculates the difference between two closed, planar curves and
adds the results to the document. Note, curves must be coplanar.
Parameters:
curve_id_0 = identifier of the first curve object.
curve_id_1 = identifier of the second curve object.
Returns:
The identifiers of the new objects if successful, None on error.
"""
return curves
def CurveBooleanIntersection(curve_id_0, curve_id_1):
"""Calculates the intersection of two closed, planar curves and adds
the results to the document. Note, curves must be coplanar.
Parameters:
curve_id_0 = identifier of the first curve object.
curve_id_1 = identifier of the second curve object.
Returns:
The identifiers of the new objects.
"""
return curves
def CurveBooleanUnion(curve_id):
"""Calculate the union of two or more closed, planar curves and
add the results to the document. Note, curves must be coplanar.
Parameters:
curve_id = list of two or more close planar curves identifiers
Returns:
The identifiers of the new objects.
"""
return curves
def CurveBrepIntersect(curve_id, brep_id, tolerance=None):
"""Intersects a curve object with a brep object. Note, unlike the
CurveSurfaceIntersection function, this function works on trimmed surfaces.
Parameters:
curve_id = identifier of a curve object
brep_id = identifier of a brep object
tolerance [opt] = distance tolerance at segment midpoints.
If omitted, the current absolute tolerance is used.
Returns:
List of identifiers for the newly created intersection curve and
point objects if successful. None on error.
"""
return curves, points
def CurveClosestObject(curve_id, object_ids):
"""Returns the 3D point locations on two objects where they are closest to
each other. Note, this function provides similar functionality to that of
Rhino's ClosestPt command.
Parameters:
curve_id = identifier of the curve object to test
object_ids = list of identifiers of point cloud, curve, surface, or
polysurface to test against
Returns:
Tuple containing the results of the closest point calculation.
The elements are as follows:
0 The identifier of the closest object.
1 The 3-D point that is closest to the closest object.
2 The 3-D point that is closest to the test curve.
"""
def CurveClosestPoint(curve_id, test_point, segment_index=-1):
"""Returns parameter of the point on a curve that is closest to a test point.
Parameters:
curve_id = identifier of a curve object
point = sampling point
segment_index [opt] = curve segment if curve_id identifies a polycurve
Returns:
The parameter of the closest point on the curve
"""
return t
def CurveContourPoints(curve_id, start_point, end_point, interval=None):
"""Returns the 3D point locations calculated by contouring a curve object.
Parameters:
curve_id = identifier of a curve object.
start_point = 3D starting point of a center line.
end_point = 3D ending point of a center line.
interval [opt] = The distance between contour curves. If omitted,
the interval will be equal to the diagonal distance of the object's
bounding box divided by 50.
Returns:
A list of 3D points, one for each contour
"""
return list(rc)
def CurveCurvature(curve_id, parameter):
"""Returns the curvature of a curve at a parameter. See the Rhino help for
details on curve curvature
Parameters:
curve_id = identifier of the curve
parameter = parameter to evaluate
Returns:
Tuple of curvature information on success
element 0 = point at specified parameter
element 1 = tangent vector
element 2 = center of radius of curvature
element 3 = radius of curvature
element 4 = curvature vector
None on failure
"""
return point, tangent, center, radius, cv
def CurveCurveIntersection(curveA, curveB=None, tolerance=-1):
"""Calculates intersection of two curve objects.
Parameters:
curveA = identifier of the first curve object.
curveB = identifier of the second curve object. If omitted, then a
self-intersection test will be performed on curveA.
tolerance [opt] = absolute tolerance in drawing units. If omitted,
the document's current absolute tolerance is used.
Returns:
List of tuples of intersection information if successful.
The list will contain one or more of the following elements:
Element Type Description
[n][0] Number The intersection event type, either Point (1) or Overlap (2).
[n][1] Point3d If the event type is Point (1), then the intersection point
on the first curve. If the event type is Overlap (2), then
intersection start point on the first curve.
[n][2] Point3d If the event type is Point (1), then the intersection point
on the first curve. If the event type is Overlap (2), then
intersection end point on the first curve.
[n][3] Point3d If the event type is Point (1), then the intersection point
on the second curve. If the event type is Overlap (2), then
intersection start point on the second curve.
[n][4] Point3d If the event type is Point (1), then the intersection point
on the second curve. If the event type is Overlap (2), then
intersection end point on the second curve.
[n][5] Number If the event type is Point (1), then the first curve parameter.
If the event type is Overlap (2), then the start value of the
first curve parameter range.
[n][6] Number If the event type is Point (1), then the first curve parameter.
If the event type is Overlap (2), then the end value of the
first curve parameter range.
[n][7] Number If the event type is Point (1), then the second curve parameter.
If the event type is Overlap (2), then the start value of the
second curve parameter range.
[n][8] Number If the event type is Point (1), then the second curve parameter.
If the event type is Overlap (2), then the end value of the
second curve parameter range.
"""
def CurveDegree(curve_id, segment_index=-1):
"""Returns the degree of a curve object.
Parameters:
curve_id = identifier of a curve object.
segment_index [opt] = the curve segment if curve_id identifies a polycurve.
Returns:
The degree of the curve if successful. None on error.
"""
return curve.Degree
def CurveDeviation(curve_a, curve_b):
"""Returns the minimum and maximum deviation between two curve objects
Parameters:
curve_a, curve_b = identifiers of two curves
Returns:
tuple of deviation information on success
element 0 = curve_a parameter at maximum overlap distance point
element 1 = curve_b parameter at maximum overlap distance point
element 2 = maximum overlap distance
element 3 = curve_a parameter at minimum overlap distance point
element 4 = curve_b parameter at minimum overlap distance point
element 5 = minimum distance between curves
None on error
"""
return maxa, maxb, maxd, mina, minb, mind
def CurveDim(curve_id, segment_index=-1):
"""Returns the dimension of a curve object
Parameters:
curve_id = identifier of a curve object.
segment_index [opt] = the curve segment if curve_id identifies a polycurve.
Returns:
The dimension of the curve if successful. None on error.
"""
return curve.Dimension
def CurveDirectionsMatch(curve_id_0, curve_id_1):
"""Tests if two curve objects are generally in the same direction or if they
would be more in the same direction if one of them were flipped. When testing
curve directions, both curves must be either open or closed - you cannot test
one open curve and one closed curve.
Parameters:
curve_id_0 = identifier of first curve object
curve_id_1 = identifier of second curve object
Returns:
True if the curve directions match, otherwise False.
"""
return Rhino.Geometry.Curve.DoDirectionsMatch(curve0, curve1)
def CurveDiscontinuity(curve_id, style):
"""Search for a derivatitive, tangent, or curvature discontinuity in
a curve object.
Parameters:
curve_id = identifier of curve object
style = The type of continuity to test for. The types of
continuity are as follows:
Value Description
1 C0 - Continuous function
2 C1 - Continuous first derivative
3 C2 - Continuous first and second derivative
4 G1 - Continuous unit tangent
5 G2 - Continuous unit tangent and curvature
Returns:
List 3D points where the curve is discontinuous
"""
return points
def CurveDomain(curve_id, segment_index=-1):
"""Returns the domain of a curve object.
Parameters:
curve_id = identifier of the curve object
segment_index[opt] = the curve segment if curve_id identifies a polycurve.
"""
return [dom.Min, dom.Max]
def CurveEditPoints(curve_id, return_parameters=False, segment_index=-1):
"""Returns the edit, or Greville, points of a curve object.
For each curve control point, there is a corresponding edit point.
Parameters:
curve_id = identifier of the curve object
return_parameters[opt] = if True, return as a list of curve parameters.
If False, return as a list of 3d points
segment_index[opt] = the curve segment is curve_id identifies a polycurve
Returns:
curve parameters of 3d points on success
None on error
"""
return nc.GrevillePoints()
def CurveEndPoint(curve_id, segment_index=-1):
"""Returns the end point of a curve object
Parameters:
curve_id = identifier of the curve object
segment_index [opt] = the curve segment if curve_id identifies a polycurve
Returns:
The 3-D end point of the curve if successful.
"""
return curve.PointAtEnd
def CurveFilletPoints(curve_id_0, curve_id_1, radius=1.0, base_point_0=None, base_point_1=None, return_points=True):
"""Find points at which to cut a pair of curves so that a fillet of a
specified radius fits. A fillet point is a pair of points (point0, point1)
such that there is a circle of radius tangent to curve curve0 at point0 and
tangent to curve curve1 at point1. Of all possible fillet points, this
function returns the one which is the closest to the base point base_point_0,
base_point_1. Distance from the base point is measured by the sum of arc
lengths along the two curves.
Parameters:
curve_id_0 = identifier of the first curve object.
curve_id_1 = identifier of the second curve object.
radius [opt] = The fillet radius. If omitted, a radius
of 1.0 is specified.
base_point_0 [opt] = The base point on the first curve.
If omitted, the starting point of the curve is used.
base_point_1 [opt] = The base point on the second curve. If omitted,
the starting point of the curve is used.
return_points [opt] = If True (Default), then fillet points are
returned. Otherwise, a fillet curve is created and
it's identifier is returned.
Returns:
If return_points is True, then a list of point and vector values
if successful. The list elements are as follows:
0 A point on the first curve at which to cut (arrPoint0).
1 A point on the second curve at which to cut (arrPoint1).
2 The fillet plane's origin (3-D point). This point is also
the center point of the fillet
3 The fillet plane's X axis (3-D vector).
4 The fillet plane's Y axis (3-D vector).
5 The fillet plane's Z axis (3-D vector).
If return_points is False, then the identifier of the fillet curve
if successful.
None if not successful, or on error.
"""
return scriptcontext.errorhandler()
def CurveFrame(curve_id, parameter, segment_index=-1):
"""Returns the plane at a parameter of a curve. The plane is based on the
tangent and curvature vectors at a parameter.
Parameters:
curve_id = identifier of the curve object.
parameter = parameter to evaluate.
segment_index [opt] = the curve segment if curve_id identifies a polycurve
Returns:
The plane at the specified parameter if successful.
None if not successful, or on error.
"""
return scriptcontext.errorhandler()
def CurveKnotCount(curve_id, segment_index=-1):
"""Returns the knot count of a curve object.
Parameters:
curve_id = identifier of the curve object.
segment_index [opt] = the curve segment if curve_id identifies a polycurve.
Returns:
The number of knots if successful.
None if not successful or on error.
"""
return nc.Knots.Count
def CurveKnots(curve_id, segment_index=-1):
"""Returns the knots, or knot vector, of a curve object
Parameters:
curve_id = identifier of the curve object.
segment_index [opt] = the curve segment if curve_id identifies a polycurve.
Returns:
knot values if successful.
None if not successful or on error.
"""
return rc
def CurveLength(curve_id, segment_index=-1, sub_domain=None):
"""Returns the length of a curve object.
Parameters:
curve_id = identifier of the curve object
segment_index [opt] = the curve segment if curve_id identifies a polycurve
sub_domain [opt] = list of two numbers identifing the sub-domain of the
curve on which the calculation will be performed. The two parameters
(sub-domain) must be non-decreasing. If omitted, the length of the
entire curve is returned.
Returns:
The length of the curve if successful.
None if not successful, or on error.
"""
return curve.GetLength()
def CurveMidPoint(curve_id, segment_index=-1):
"""Returns the mid point of a curve object.
Parameters:
curve_id = identifier of the curve object
segment_index [opt] = the curve segment if curve_id identifies a polycurve
Returns:
The 3D mid point of the curve if successful.
None if not successful, or on error.
"""
return scriptcontext.errorhandler()
def CurveNormal(curve_id, segment_index=-1):
"""Returns the normal direction of the plane in which a planar curve object lies.
Parameters:
curve_id = identifier of the curve object
segment_index [opt] = the curve segment if curve_id identifies a polycurve
Returns:
The 3D normal vector if sucessful.
None if not successful, or on error.
"""
return scriptcontext.errorhandler()
def CurveNormalizedParameter(curve_id, parameter):
"""Converts a curve parameter to a normalized curve parameter;
one that ranges between 0-1
Parameters:
curve_id = identifier of the curve object
parameter = the curve parameter to convert
Returns:
normalized curve parameter
"""
return curve.Domain.NormalizedParameterAt(parameter)
def CurveParameter(curve_id, parameter):
"""Converts a normalized curve parameter to a curve parameter;
one within the curve's domain
Parameters:
curve_id = identifier of the curve object
parameter = the normalized curve parameter to convert
Returns:
curve parameter
"""
return curve.Domain.ParameterAt(parameter)
def CurvePerpFrame(curve_id, parameter):
"""Returns the perpendicular plane at a parameter of a curve. The result
is relatively parallel (zero-twisting) plane
Parameters:
curve_id = identifier of the curve object
parameter = parameter to evaluate
Returns: