-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRed_zone.cpp
208 lines (126 loc) · 5.78 KB
/
Red_zone.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
// Question Link - https://www.interviewbit.com/problems/red-zone/
// Solution
// int Solution::solve(vector<vector<int> > &A, int B) {
// }
// Imagine the points as radiating circles, circle radius r is number of days that have passed
// as soon as B circles intersect each other at xth day, that xth day is our answer
// Brute Force - select B points from N points and keep increasing there radius(r), till all B points Eucaldian distance d
// with one another is less than radius + radius(2*r), repeat this process, answer is minimum number of radius that satisfies this condition
// Time Complexity - choose b from n * choose 2 from B * max(distance between two choosen point/2)
// Which is O(n!*B^2*INT_MAX) in the worst case
// Optimized - Lower bound Binary Search radius r from 1 to INT_MAX, check if r gives sufficiant expansion so that
// any two points eucaldian distance d <= r+r, if so, let the intersected area be X, check if every other point with a radius
// of r can reach this area X, if yes, increase the count, keep max count for r and if max count of r >= B that means r has
// sufficiant given sufficiant radial expansion
// Time Complexity O(n^3*log(INT_MAX))
// But how to we keep track of this Area X i.e intersection of 2 circles and check if point lies between them ?
// refer to this article: https://stackoverflow.com/questions/3349125/circle-circle-intersection-points#:~:text=The%20following%20note%20describes%20how,P1%20%2D%20P0%7C%7C.
// here a = d/2, so h = r^2 - d^2/4
// Px1 = midx - (y1-y0)h/d Px2 = midx + (y1-y0)h/d
// Py1 = midy + (x1-x0)h/d Py2 = midy - (x1-x0)h/d
// whatever be the order of the points, p1 and p2 get switched accordingly
// Eucaldian distance between (P1,Point) <= r for r to reach it, similarly for (P2,Point) <= r,
// if point with r is able to reach P1, count 1 gets increased, if able to reach P2 count 2 gets increased, if able to reach
// both, then both count 1 and count 2 will increase
// function for Eucaldian Distance
double dist(double x1,double x2,double y1,double y2){
return sqrt((x1-x2)*(x1-x2) + (y1-y2)*(y1-y2));
}
bool check(int r,vector<vector<int>> &A,int B){
int maximum_reachable_points=0;
for(int i = 0;i<A.size();i++){
for(int j = i+1;j<A.size(); j++){
double d = dist(A[i][0],A[j][0],A[i][1],A[j][1]);
if(d <= 2*r){
// i and j have been seleted, calculating all the points that are able to reach the area of intersection of
// circle i and circle j with help of circle of radius r using maths
double midx = (double)(A[i][0] + A[j][0]) * (1.0/2);
double midy = (double)(A[i][1] + A[j][1]) * (1.0/2);
double h = sqrt(r*1.0*r - d*d/4);
double Px1 = midx - (double)(A[i][1]-A[j][1])*(h/d);
double Px2 = midx + (double)(A[i][1]-A[j][1])*(h/d);
double Py1 = midy + (double)(A[i][0]-A[j][0])*(h/d);
double Py2 = midy - (double)(A[i][0]-A[j][0])*(h/d);
int count_px1 = 2, count_px2 = 2;
for(int k = 0; k < A.size(); k++){
if(k == i || k == j){
continue;
}
if(dist(Px1,A[k][0],Py1,A[k][1]) <= r){
++count_px1;
}
if(dist(Px2,A[k][0],Py2,A[k][1]) <= r){
++count_px2;
}
}
maximum_reachable_points=max(maximum_reachable_points,max(count_px1,count_px2));
}
}
}
return (maximum_reachable_points>=B);
}
int Solution::solve(vector<vector<int>> &A, int B) {
// doing a lower bound binaray search on number of days x
int ans;
int l = 1, r = INT_MAX;
while(r >= l){
int m = (l+r)/2;
if(check(m,A,B)){
ans = m;
// cout << ans << " ";
r = m-1;
}
else l = m+1;
}
return ans;
}
/////////
long double dist(pair<long double,long double>a, pair<long double,long double>b){
return (a.first-b.first)*(a.first-b.first)+(a.second-b.second)*(a.second-b.second);
}
bool check(vector<pair<long double,long double>>A, int B,long double d){
d*=d;
for(int i=0;i<A.size();i++){
for(int j=i+1;j<A.size();j++){
// pair<long double,long double> A[i] = A[i], A[j] = A[j];
long double h = dist(A[i],A[j]);
long double D = (4*d-h)/h;
if(4*d-h>=0.0){
int cn1=0,cn2=0;
pair<long double,long double>x,y;
x.first = ((A[i].first+A[j].first)+sqrt(D)*(A[i].second-A[j].second))/2;
x.second = ((A[i].second+A[j].second)+sqrt(D)*(A[j].first-A[i].first))/2;
y.first = ((A[i].first+A[j].first)-sqrt(D)*(A[i].second-A[j].second))/2;
y.second = ((A[i].second+A[j].second)-sqrt(D)*(A[j].first-A[i].first))/2;
for(int k=0;k<A.size();k++){
if(dist(x,A[k])<=d+0.1)cn1++;
if(dist(y,A[k])<=d+0.1)cn2++;
}
if(cn1>=B){
return true;
}
if(cn2>=B){
return true;
}
}
}
}
return false;
}
int Solution::solve(vector<vector<int> > &A, int B) {
vector<pair<long double,long double>>C;
int r = 0, l=0;
for(int i=0;i<A.size();i++){
long double xcoor=A[i][0]*(1.0);
long double ycoor=A[i][1]*(1.0);
r=max({r,A[i][0],A[i][1]});
C.push_back({xcoor,ycoor});
}
while(l<=r){
int mid = l + (r-l)/2;
if(check(C,B,mid))
r = mid-1;
else l = mid+1;
}
return l;
}