-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimple_queries.cpp
209 lines (110 loc) · 3.92 KB
/
simple_queries.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
// Question Link - https://www.interviewbit.com/problems/simple-queries/
// Problem Description
// You are given an array A having N integers.
// You have to perform the following steps in a given order.
// 1) generate all subarrays of A.
// 2) take the maximum element from each subarray of A and insert it into a new array G.
// 3) replace every element of G with the product of their divisors mod 1e9 + 7.
// 4) sort G in descending order
// You now need to perform Q queries
// In each query, you are given an integer K, where you have to find the Kth element in G.
// NOTE : Your solution will run on multiple test cases so do clear global variables after using them.
// The question involves a lot of mathematics. The first observation required is to calculate the maximum numbers
// in all subarrays. This could be done most optimally using a stack and two arrays in O(N), You can find the
// explanation here https://www.geeksforgeeks.org/sum-of-maximum-elements-of-all-possible-sub-arrays-of-an-array/
// Before that we have already calculated the number of divisors of a number using modified form of sieve. After all
// this we can store frequency of each number and then calculate product of divisors. The product of divisors
// of a number N is nothing but N^(D/2) where D is the number of divisors of N. Thus now using binary
// exponentiation we can calculate N^(D/2) in about Log(N) time. After this we can sort all numbers in
// decreasing order and then form the prefix sum array. Now we can easily apply binary search for each query
// over prefix sum array to see where our P.O.D lies (product of divisors) and store it in the answer array.
long long binexp(long long x,long long y){
long long mod = 1e9+7;
long long ans = 1; long long u = x,v = y;
if(v%2){
ans = ans*sqrt(u);
ans%=mod;
ans+=mod;
ans%=mod;
}
v/=2;
while(v){
if(v&1){
ans*=u;
ans%=mod;
ans+=mod;
ans%=mod;
}
u = u*u;
u%=mod;
u+=mod;
u%=mod;
v>>=1;
}
return ans;
}
vector<int> Solution::solve(vector<int> &A, vector<int> &B) {
vector<long long>divisors(1000005,0);
for(long long i = 1; i<1000005; i++){
for(long long j = 1; i*j<1000005; j++){
divisors[i*j]++;
}
}
long long n = A.size();
vector<long long>leftcnt(n,0),rightcnt(n,0);
stack<long long>st;
for(int i = 0; i<n; i++){
while(!st.empty() && A[st.top()]<=A[i]){
leftcnt[i]+=(leftcnt[st.top()]+1);
st.pop();
}
st.push(i);
}
while(!st.empty()){
st.pop();
}
for(int i = n-1; i>=0; i--){
while(!st.empty() && A[st.top()]<A[i]){
rightcnt[i]+=(rightcnt[st.top()]+1);
st.pop();
}
st.push(i);
}
map<long long,long long>mp;
long long mod = 1e9+7;
for(int i = 0; i<n; i++){
long long val = (leftcnt[i]+1)*(rightcnt[i]+1);
if(mp.find(A[i])==mp.end()){
mp[A[i]] = val;
}
else{
mp[A[i]]+=val;
}
}
vector<pair<long long,long long>>nums;
for(auto it : mp){
long long ans = binexp(it.first,divisors[it.first]);
nums.push_back({ans,it.second});
}
sort(nums.rbegin(),nums.rend());
for(int i = 1; i<nums.size(); i++){
nums[i].second+=nums[i-1].second;
}
int m = B.size();
vector<int>answ(m);
for(int i = 0; i<m; i++){
int start = 0,end = nums.size()-1,mid = 0,ans = 0;
while(start<=end){
mid = start+(end-start)/2;
if(nums[mid].second>=B[i]){
ans = mid;
end = mid-1;
}
else{
start = mid+1;
}
}
answ[i] = (int)nums[ans].first;
}
return answ;
}