-
-
Notifications
You must be signed in to change notification settings - Fork 480
/
Copy pathexample_multi_objective.py
72 lines (58 loc) · 3.06 KB
/
example_multi_objective.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import pygad
import numpy
"""
Given these 2 functions:
y1 = f(w1:w6) = w1x1 + w2x2 + w3x3 + w4x4 + w5x5 + 6wx6
y2 = f(w1:w6) = w1x7 + w2x8 + w3x9 + w4x10 + w5x11 + 6wx12
where (x1,x2,x3,x4,x5,x6)=(4,-2,3.5,5,-11,-4.7) and y=50
and (x7,x8,x9,x10,x11,x12)=(-2,0.7,-9,1.4,3,5) and y=30
What are the best values for the 6 weights (w1 to w6)? We are going to use the genetic algorithm to optimize these 2 functions.
This is a multi-objective optimization problem.
PyGAD considers the problem as multi-objective if the fitness function returns:
1) List.
2) Or tuple.
3) Or numpy.ndarray.
"""
function_inputs1 = [4,-2,3.5,5,-11,-4.7] # Function 1 inputs.
function_inputs2 = [-2,0.7,-9,1.4,3,5] # Function 2 inputs.
desired_output1 = 50 # Function 1 output.
desired_output2 = 30 # Function 2 output.
def fitness_func(ga_instance, solution, solution_idx):
output1 = numpy.sum(solution*function_inputs1)
output2 = numpy.sum(solution*function_inputs2)
fitness1 = 1.0 / (numpy.abs(output1 - desired_output1) + 0.000001)
fitness2 = 1.0 / (numpy.abs(output2 - desired_output2) + 0.000001)
return [fitness1, fitness2]
num_generations = 100 # Number of generations.
num_parents_mating = 10 # Number of solutions to be selected as parents in the mating pool.
sol_per_pop = 20 # Number of solutions in the population.
num_genes = len(function_inputs1)
last_fitness = 0
def on_generation(ga_instance):
global last_fitness
print(f"Generation = {ga_instance.generations_completed}")
print(f"Fitness = {ga_instance.best_solution(pop_fitness=ga_instance.last_generation_fitness)[1]}")
print(f"Change = {ga_instance.best_solution(pop_fitness=ga_instance.last_generation_fitness)[1] - last_fitness}")
last_fitness = ga_instance.best_solution(pop_fitness=ga_instance.last_generation_fitness)[1]
ga_instance = pygad.GA(num_generations=num_generations,
num_parents_mating=num_parents_mating,
sol_per_pop=sol_per_pop,
num_genes=num_genes,
fitness_func=fitness_func,
parent_selection_type='nsga2',
on_generation=on_generation)
# Running the GA to optimize the parameters of the function.
ga_instance.run()
ga_instance.plot_fitness(label=['Obj 1', 'Obj 2'])
ga_instance.plot_pareto_front_curve()
# Returning the details of the best solution.
solution, solution_fitness, solution_idx = ga_instance.best_solution(ga_instance.last_generation_fitness)
print(f"Parameters of the best solution : {solution}")
print(f"Fitness value of the best solution = {solution_fitness}")
print(f"Index of the best solution : {solution_idx}")
prediction = numpy.sum(numpy.array(function_inputs1)*solution)
print(f"Predicted output 1 based on the best solution : {prediction}")
prediction = numpy.sum(numpy.array(function_inputs2)*solution)
print(f"Predicted output 2 based on the best solution : {prediction}")
if ga_instance.best_solution_generation != -1:
print(f"Best fitness value reached after {ga_instance.best_solution_generation} generations.")