-
-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathmodel.py
25 lines (19 loc) · 831 Bytes
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import torch
import torchvision
from torch import nn
def create_effnetb2_model(num_classes: int = 3, # default output classes = 3 (pizza, steak, sushi)
seed: int = 42):
# 1, 2, 3 Create EffNetB2 pretrained weights, transforms and model
weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
transforms = weights.transforms()
model = torchvision.models.efficientnet_b2(weights=weights)
# 4. Freeze all layers in the base model
for param in model.parameters():
param.requires_grad = False
# 5. Change classifier head with random seed for reproducibility
torch.manual_seed(seed)
model.classifier = nn.Sequential(
nn.Dropout(p=0.3, inplace=True),
nn.Linear(in_features=1408, out_features=num_classes)
)
return model, transforms