-
Notifications
You must be signed in to change notification settings - Fork 8.3k
/
Copy pathbridge_llama2.py
90 lines (76 loc) · 4.33 KB
/
bridge_llama2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
model_name = "LLaMA"
cmd_to_install = "`pip install -r request_llms/requirements_chatglm.txt`"
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from toolbox import update_ui, get_conf, ProxyNetworkActivate
from multiprocessing import Process, Pipe
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns
from threading import Thread
# ------------------------------------------------------------------------------------------------------------------------
# 🔌💻 Local Model
# ------------------------------------------------------------------------------------------------------------------------
class GetLlamaHandle(LocalLLMHandle):
def load_model_info(self):
# 🏃♂️🏃♂️🏃♂️ 子进程执行
self.model_name = model_name
self.cmd_to_install = cmd_to_install
def load_model_and_tokenizer(self):
# 🏃♂️🏃♂️🏃♂️ 子进程执行
import os, glob
import os
import platform
huggingface_token, device = get_conf('HUGGINGFACE_ACCESS_TOKEN', 'LOCAL_MODEL_DEVICE')
assert len(huggingface_token) != 0, "没有填写 HUGGINGFACE_ACCESS_TOKEN"
with open(os.path.expanduser('~/.cache/huggingface/token'), 'w', encoding='utf8') as f:
f.write(huggingface_token)
model_id = 'meta-llama/Llama-2-7b-chat-hf'
with ProxyNetworkActivate('Download_LLM'):
self._tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=huggingface_token)
# use fp16
model = AutoModelForCausalLM.from_pretrained(model_id, use_auth_token=huggingface_token).eval()
if device.startswith('cuda'): model = model.half().to(device)
self._model = model
return self._model, self._tokenizer
def llm_stream_generator(self, **kwargs):
# 🏃♂️🏃♂️🏃♂️ 子进程执行
def adaptor(kwargs):
query = kwargs['query']
max_length = kwargs['max_length']
top_p = kwargs['top_p']
temperature = kwargs['temperature']
history = kwargs['history']
console_silence = kwargs.get('console_silence', True)
return query, max_length, top_p, temperature, history, console_silence
def convert_messages_to_prompt(query, history):
prompt = ""
for a, b in history:
prompt += f"\n[INST]{a}[/INST]"
prompt += "\n{b}" + b
prompt += f"\n[INST]{query}[/INST]"
return prompt
query, max_length, top_p, temperature, history, console_silence = adaptor(kwargs)
prompt = convert_messages_to_prompt(query, history)
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-
# code from transformers.llama
streamer = TextIteratorStreamer(self._tokenizer)
# Run the generation in a separate thread, so that we can fetch the generated text in a non-blocking way.
inputs = self._tokenizer([prompt], return_tensors="pt")
prompt_tk_back = self._tokenizer.batch_decode(inputs['input_ids'])[0]
generation_kwargs = dict(inputs.to(self._model.device), streamer=streamer, max_new_tokens=max_length)
thread = Thread(target=self._model.generate, kwargs=generation_kwargs)
thread.start()
generated_text = ""
for new_text in streamer:
generated_text += new_text
if not console_silence: print(new_text, end='')
yield generated_text.lstrip(prompt_tk_back).rstrip("</s>")
if not console_silence: print()
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-
def try_to_import_special_deps(self, **kwargs):
# import something that will raise error if the user does not install requirement_*.txt
# 🏃♂️🏃♂️🏃♂️ 主进程执行
import importlib
importlib.import_module('transformers')
# ------------------------------------------------------------------------------------------------------------------------
# 🔌💻 GPT-Academic Interface
# ------------------------------------------------------------------------------------------------------------------------
predict_no_ui_long_connection, predict = get_local_llm_predict_fns(GetLlamaHandle, model_name)