-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
Copy pathtest_blending.py
476 lines (405 loc) · 16.4 KB
/
test_blending.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import torch
from pytorch3d.renderer.blending import (
BlendParams,
hard_rgb_blend,
sigmoid_alpha_blend,
softmax_rgb_blend,
)
from pytorch3d.renderer.cameras import FoVPerspectiveCameras
from pytorch3d.renderer.mesh.rasterizer import Fragments
from pytorch3d.renderer.splatter_blend import SplatterBlender
from .common_testing import TestCaseMixin
def sigmoid_blend_naive_loop(colors, fragments, blend_params):
"""
Naive for loop based implementation of distance based alpha calculation.
Only for test purposes.
"""
pix_to_face = fragments.pix_to_face
dists = fragments.dists
sigma = blend_params.sigma
N, H, W, K = pix_to_face.shape
device = pix_to_face.device
pixel_colors = torch.ones((N, H, W, 4), dtype=colors.dtype, device=device)
for n in range(N):
for h in range(H):
for w in range(W):
alpha = 1.0
# Loop over k faces and calculate 2D distance based probability
# map.
for k in range(K):
if pix_to_face[n, h, w, k] >= 0:
prob = torch.sigmoid(-dists[n, h, w, k] / sigma)
alpha *= 1.0 - prob # cumulative product
pixel_colors[n, h, w, :3] = colors[n, h, w, 0, :]
pixel_colors[n, h, w, 3] = 1.0 - alpha
return pixel_colors
def sigmoid_alpha_blend_vectorized(colors, fragments, blend_params) -> torch.Tensor:
N, H, W, K = fragments.pix_to_face.shape
pixel_colors = torch.ones((N, H, W, 4), dtype=colors.dtype, device=colors.device)
mask = fragments.pix_to_face >= 0
prob = torch.sigmoid(-fragments.dists / blend_params.sigma) * mask
pixel_colors[..., :3] = colors[..., 0, :]
pixel_colors[..., 3] = 1.0 - torch.prod((1.0 - prob), dim=-1)
return pixel_colors
def sigmoid_blend_naive_loop_backward(grad_images, images, fragments, blend_params):
pix_to_face = fragments.pix_to_face
dists = fragments.dists
sigma = blend_params.sigma
N, H, W, K = pix_to_face.shape
device = pix_to_face.device
grad_distances = torch.zeros((N, H, W, K), dtype=dists.dtype, device=device)
for n in range(N):
for h in range(H):
for w in range(W):
alpha = 1.0 - images[n, h, w, 3]
grad_alpha = grad_images[n, h, w, 3]
# Loop over k faces and calculate 2D distance based probability
# map.
for k in range(K):
if pix_to_face[n, h, w, k] >= 0:
prob = torch.sigmoid(-dists[n, h, w, k] / sigma)
grad_distances[n, h, w, k] = (
grad_alpha * (-1.0 / sigma) * prob * alpha
)
return grad_distances
def softmax_blend_naive(colors, fragments, blend_params):
"""
Naive for loop based implementation of softmax blending.
Only for test purposes.
"""
pix_to_face = fragments.pix_to_face
dists = fragments.dists
zbuf = fragments.zbuf
sigma = blend_params.sigma
gamma = blend_params.gamma
N, H, W, K = pix_to_face.shape
device = pix_to_face.device
pixel_colors = torch.ones((N, H, W, 4), dtype=colors.dtype, device=device)
# Near and far clipping planes
zfar = 100.0
znear = 1.0
eps = 1e-10
bk_color = blend_params.background_color
if not torch.is_tensor(bk_color):
bk_color = torch.tensor(bk_color, dtype=colors.dtype, device=device)
for n in range(N):
for h in range(H):
for w in range(W):
alpha = 1.0
weights_k = torch.zeros(K, device=device)
zmax = torch.tensor(0.0, device=device)
# Loop over K to find max z.
for k in range(K):
if pix_to_face[n, h, w, k] >= 0:
zinv = (zfar - zbuf[n, h, w, k]) / (zfar - znear)
if zinv > zmax:
zmax = zinv
# Loop over K faces to calculate 2D distance based probability
# map and zbuf based weights for colors.
for k in range(K):
if pix_to_face[n, h, w, k] >= 0:
zinv = (zfar - zbuf[n, h, w, k]) / (zfar - znear)
prob = torch.sigmoid(-dists[n, h, w, k] / sigma)
alpha *= 1.0 - prob # cumulative product
weights_k[k] = prob * torch.exp((zinv - zmax) / gamma)
# Clamp to ensure delta is never 0
delta = torch.exp((eps - zmax) / blend_params.gamma).clamp(min=eps)
delta = delta.to(device)
denom = weights_k.sum() + delta
cols = (weights_k[..., None] * colors[n, h, w, :, :]).sum(dim=0)
pixel_colors[n, h, w, :3] = cols + delta * bk_color
pixel_colors[n, h, w, :3] /= denom
pixel_colors[n, h, w, 3] = 1.0 - alpha
return pixel_colors
class TestBlending(TestCaseMixin, unittest.TestCase):
def setUp(self) -> None:
torch.manual_seed(42)
def _compare_impls(
self, fn1, fn2, args1, args2, grad_var1=None, grad_var2=None, compare_grads=True
):
out1 = fn1(*args1)
out2 = fn2(*args2)
self.assertClose(out1.cpu()[..., 3], out2.cpu()[..., 3], atol=1e-7)
# Check gradients
if not compare_grads:
return
grad_out = torch.randn_like(out1)
(out1 * grad_out).sum().backward()
self.assertTrue(hasattr(grad_var1, "grad"))
(out2 * grad_out).sum().backward()
self.assertTrue(hasattr(grad_var2, "grad"))
self.assertClose(grad_var1.grad.cpu(), grad_var2.grad.cpu(), atol=2e-5)
def test_hard_rgb_blend(self):
N, H, W, K = 5, 10, 10, 20
pix_to_face = torch.randint(low=-1, high=100, size=(N, H, W, K))
bary_coords = torch.ones((N, H, W, K, 3))
fragments = Fragments(
pix_to_face=pix_to_face,
bary_coords=bary_coords,
zbuf=pix_to_face, # dummy
dists=pix_to_face, # dummy
)
colors = torch.randn((N, H, W, K, 3))
blend_params = BlendParams(1e-4, 1e-4, (0.5, 0.5, 1))
images = hard_rgb_blend(colors, fragments, blend_params)
# Examine if the foreground colors are correct.
is_foreground = pix_to_face[..., 0] >= 0
self.assertClose(images[is_foreground][:, :3], colors[is_foreground][..., 0, :])
# Examine if the background colors are correct.
for i in range(3): # i.e. RGB
channel_color = blend_params.background_color[i]
self.assertTrue(images[~is_foreground][..., i].eq(channel_color).all())
# Examine the alpha channel
self.assertClose(images[..., 3], (pix_to_face[..., 0] >= 0).float())
def test_sigmoid_alpha_blend_manual_gradients(self):
# Create dummy outputs of rasterization
torch.manual_seed(231)
F = 32 # number of faces in the mesh
# The python loop version is really slow so only using small input sizes.
N, S, K = 2, 3, 2
device = torch.device("cuda")
pix_to_face = torch.randint(F + 1, size=(N, S, S, K), device=device) - 1
colors = torch.randn((N, S, S, K, 3), device=device)
empty = torch.tensor([], device=device)
# # randomly flip the sign of the distance
# # (-) means inside triangle, (+) means outside triangle.
random_sign_flip = torch.rand((N, S, S, K))
random_sign_flip[random_sign_flip > 0.5] *= -1.0
dists = torch.randn(size=(N, S, S, K), requires_grad=True, device=device)
fragments = Fragments(
pix_to_face=pix_to_face,
bary_coords=empty, # dummy
zbuf=empty, # dummy
dists=dists,
)
blend_params = BlendParams(sigma=1e-3)
pix_cols = sigmoid_blend_naive_loop(colors, fragments, blend_params)
grad_out = torch.randn_like(pix_cols)
# Backward pass
pix_cols.backward(grad_out)
grad_dists = sigmoid_blend_naive_loop_backward(
grad_out, pix_cols, fragments, blend_params
)
self.assertTrue(torch.allclose(dists.grad, grad_dists, atol=1e-7))
def test_sigmoid_alpha_blend_python(self):
"""
Test outputs of python tensorised function and python loop
"""
# Create dummy outputs of rasterization
torch.manual_seed(231)
F = 32 # number of faces in the mesh
# The python loop version is really slow so only using small input sizes.
N, S, K = 1, 4, 1
device = torch.device("cuda")
pix_to_face = torch.randint(low=-1, high=F, size=(N, S, S, K), device=device)
colors = torch.randn((N, S, S, K, 3), device=device)
empty = torch.tensor([], device=device)
dists1 = torch.randn(size=(N, S, S, K), device=device)
dists2 = dists1.clone()
dists1.requires_grad = True
dists2.requires_grad = True
fragments1 = Fragments(
pix_to_face=pix_to_face,
bary_coords=empty, # dummy
zbuf=empty, # dummy
dists=dists1,
)
fragments2 = Fragments(
pix_to_face=pix_to_face,
bary_coords=empty, # dummy
zbuf=empty, # dummy
dists=dists2,
)
blend_params = BlendParams(sigma=1e-2)
args1 = (colors, fragments1, blend_params)
args2 = (colors, fragments2, blend_params)
self._compare_impls(
sigmoid_alpha_blend,
sigmoid_alpha_blend_vectorized,
args1,
args2,
dists1,
dists2,
compare_grads=True,
)
def test_softmax_rgb_blend(self):
# Create dummy outputs of rasterization simulating a cube in the center
# of the image with surrounding padded values.
N, S, K = 1, 8, 2
device = torch.device("cuda")
pix_to_face = torch.full(
(N, S, S, K), fill_value=-1, dtype=torch.int64, device=device
)
h = int(S / 2)
pix_to_face_full = torch.randint(
size=(N, h, h, K), low=0, high=100, device=device
)
s = int(S / 4)
e = int(0.75 * S)
pix_to_face[:, s:e, s:e, :] = pix_to_face_full
empty = torch.tensor([], device=device)
random_sign_flip = torch.rand((N, S, S, K), device=device)
random_sign_flip[random_sign_flip > 0.5] *= -1.0
zbuf1 = torch.randn(size=(N, S, S, K), device=device)
# randomly flip the sign of the distance
# (-) means inside triangle, (+) means outside triangle.
dists1 = torch.randn(size=(N, S, S, K), device=device) * random_sign_flip
dists2 = dists1.clone()
zbuf2 = zbuf1.clone()
dists1.requires_grad = True
dists2.requires_grad = True
colors = torch.randn((N, S, S, K, 3), device=device)
fragments1 = Fragments(
pix_to_face=pix_to_face,
bary_coords=empty, # dummy
zbuf=zbuf1,
dists=dists1,
)
fragments2 = Fragments(
pix_to_face=pix_to_face,
bary_coords=empty, # dummy
zbuf=zbuf2,
dists=dists2,
)
blend_params = BlendParams(sigma=1e-3)
args1 = (colors, fragments1, blend_params)
args2 = (colors, fragments2, blend_params)
self._compare_impls(
softmax_rgb_blend,
softmax_blend_naive,
args1,
args2,
dists1,
dists2,
compare_grads=True,
)
@staticmethod
def bm_sigmoid_alpha_blending(
num_meshes: int = 16,
image_size: int = 128,
faces_per_pixel: int = 100,
device="cuda",
backend: str = "pytorch",
):
device = torch.device(device)
torch.manual_seed(231)
# Create dummy outputs of rasterization
N, S, K = num_meshes, image_size, faces_per_pixel
F = 32 # num faces in the mesh
pix_to_face = torch.randint(
low=-1, high=F + 1, size=(N, S, S, K), device=device
)
colors = torch.randn((N, S, S, K, 3), device=device)
empty = torch.tensor([], device=device)
dists1 = torch.randn(size=(N, S, S, K), requires_grad=True, device=device)
fragments = Fragments(
pix_to_face=pix_to_face,
bary_coords=empty, # dummy
zbuf=empty, # dummy
dists=dists1,
)
blend_params = BlendParams(sigma=1e-3)
blend_fn = (
sigmoid_alpha_blend_vectorized
if backend == "pytorch"
else sigmoid_alpha_blend
)
torch.cuda.synchronize()
def fn():
# test forward and backward pass
images = blend_fn(colors, fragments, blend_params)
images.sum().backward()
torch.cuda.synchronize()
return fn
@staticmethod
def bm_softmax_blending(
num_meshes: int = 16,
image_size: int = 128,
faces_per_pixel: int = 100,
device: str = "cpu",
backend: str = "pytorch",
):
if torch.cuda.is_available() and "cuda:" in device:
# If a device other than the default is used, set the device explicity.
torch.cuda.set_device(device)
device = torch.device(device)
torch.manual_seed(231)
# Create dummy outputs of rasterization
N, S, K = num_meshes, image_size, faces_per_pixel
F = 32 # num faces in the mesh
pix_to_face = torch.randint(
low=-1, high=F + 1, size=(N, S, S, K), device=device
)
colors = torch.randn((N, S, S, K, 3), device=device)
empty = torch.tensor([], device=device)
dists1 = torch.randn(size=(N, S, S, K), requires_grad=True, device=device)
zbuf = torch.randn(size=(N, S, S, K), requires_grad=True, device=device)
fragments = Fragments(
pix_to_face=pix_to_face,
bary_coords=empty,
zbuf=zbuf,
dists=dists1, # dummy
)
blend_params = BlendParams(sigma=1e-3)
torch.cuda.synchronize()
def fn():
# test forward and backward pass
images = softmax_rgb_blend(colors, fragments, blend_params)
images.sum().backward()
torch.cuda.synchronize()
return fn
@staticmethod
def bm_splatter_blending(
num_meshes: int = 16,
image_size: int = 128,
faces_per_pixel: int = 2,
use_jit: bool = False,
device: str = "cpu",
backend: str = "pytorch",
):
if torch.cuda.is_available() and "cuda:" in device:
# If a device other than the default is used, set the device explicity.
torch.cuda.set_device(device)
device = torch.device(device)
torch.manual_seed(231)
# Create dummy outputs of rasterization
N, S, K = num_meshes, image_size, faces_per_pixel
F = 32 # num faces in the mesh
pixel_coords_camera = torch.randn(
(N, S, S, K, 3), device=device, requires_grad=True
)
cameras = FoVPerspectiveCameras(device=device)
colors = torch.randn((N, S, S, K, 3), device=device)
background_mask = torch.randint(
low=-1, high=F + 1, size=(N, S, S, K), device=device
)
background_mask = torch.full((N, S, S, K), False, dtype=bool, device=device)
blend_params = BlendParams(sigma=0.5)
torch.cuda.synchronize()
splatter_blender = SplatterBlender((N, S, S, K), colors.device)
def fn():
# test forward and backward pass
images = splatter_blender(
colors,
pixel_coords_camera,
cameras,
background_mask,
blend_params,
)
images.sum().backward()
torch.cuda.synchronize()
return fn
def test_blend_params(self):
"""Test color parameter of BlendParams().
Assert passed value overrides default value.
"""
bp_default = BlendParams()
bp_new = BlendParams(background_color=(0.5, 0.5, 0.5))
self.assertEqual(bp_new.background_color, (0.5, 0.5, 0.5))
self.assertEqual(bp_default.background_color, (1.0, 1.0, 1.0))