-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
Copy pathtest_io_ply.py
965 lines (869 loc) · 35.2 KB
/
test_io_ply.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import itertools
import struct
import unittest
from io import BytesIO, StringIO
from tempfile import NamedTemporaryFile, TemporaryFile
import numpy as np
import pytorch3d.io.ply_io
import torch
from iopath.common.file_io import PathManager
from pytorch3d.io import IO
from pytorch3d.io.ply_io import load_ply, save_ply
from pytorch3d.renderer.mesh import TexturesVertex
from pytorch3d.structures import Meshes, Pointclouds
from pytorch3d.utils import torus
from .common_testing import get_tests_dir, TestCaseMixin
global_path_manager = PathManager()
DATA_DIR = get_tests_dir() / "data"
def _load_ply_raw(stream):
return pytorch3d.io.ply_io._load_ply_raw(stream, global_path_manager)
CUBE_PLY_LINES = [
"ply",
"format ascii 1.0",
"comment made by Greg Turk",
"comment this file is a cube",
"element vertex 8",
"property float x",
"property float y",
"property float z",
"element face 6",
"property list uchar int vertex_index",
"end_header",
"0 0 0",
"0 0 1",
"0 1 1",
"0 1 0",
"1 0 0",
"1 0 1",
"1 1 1",
"1 1 0",
"4 0 1 2 3",
"4 7 6 5 4",
"4 0 4 5 1",
"4 1 5 6 2",
"4 2 6 7 3",
"4 3 7 4 0",
]
CUBE_VERTS = [
[0, 0, 0],
[0, 0, 1],
[0, 1, 1],
[0, 1, 0],
[1, 0, 0],
[1, 0, 1],
[1, 1, 1],
[1, 1, 0],
]
CUBE_FACES = [
[0, 1, 2],
[7, 6, 5],
[0, 4, 5],
[1, 5, 6],
[2, 6, 7],
[3, 7, 4],
[0, 2, 3],
[7, 5, 4],
[0, 5, 1],
[1, 6, 2],
[2, 7, 3],
[3, 4, 0],
]
class TestMeshPlyIO(TestCaseMixin, unittest.TestCase):
def test_raw_load_simple_ascii(self):
ply_file = "\n".join(
[
"ply",
"format ascii 1.0",
"comment made by Greg Turk",
"comment this file is a cube",
"element vertex 8",
"property float x",
"property float y",
"property float z",
"element face 6",
"property list uchar int vertex_index",
"element irregular_list 3",
"property list uchar int vertex_index",
"end_header",
"0 0 0",
"0 0 1",
"0 1 1",
"0 1 0",
"1 0 0",
"1 0 1",
"1 1 1",
"1 1 0",
"4 0 1 2 3",
"4 7 6 5 4",
"4 0 4 5 1",
"4 1 5 6 2",
"4 2 6 7 3",
"4 3 7 4 0", # end of faces
"4 0 1 2 3",
"4 7 6 5 4",
"3 4 5 1",
]
)
for line_ending in [None, "\n", "\r\n"]:
if line_ending is None:
stream = StringIO(ply_file)
else:
byte_file = ply_file.encode("ascii")
if line_ending == "\r\n":
byte_file = byte_file.replace(b"\n", b"\r\n")
stream = BytesIO(byte_file)
header, data = _load_ply_raw(stream)
self.assertTrue(header.ascii)
self.assertEqual(len(data), 3)
self.assertTupleEqual(data["face"].shape, (6, 4))
self.assertClose([0, 1, 2, 3], data["face"][0])
self.assertClose([3, 7, 4, 0], data["face"][5])
[vertex0] = data["vertex"]
self.assertTupleEqual(vertex0.shape, (8, 3))
irregular = data["irregular_list"]
self.assertEqual(len(irregular), 3)
self.assertEqual(type(irregular), list)
[x] = irregular[0]
self.assertClose(x, [0, 1, 2, 3])
[x] = irregular[1]
self.assertClose(x, [7, 6, 5, 4])
[x] = irregular[2]
self.assertClose(x, [4, 5, 1])
def test_load_simple_ascii(self):
ply_file = "\n".join(CUBE_PLY_LINES)
for line_ending in [None, "\n", "\r\n"]:
if line_ending is None:
stream = StringIO(ply_file)
else:
byte_file = ply_file.encode("ascii")
if line_ending == "\r\n":
byte_file = byte_file.replace(b"\n", b"\r\n")
stream = BytesIO(byte_file)
verts, faces = load_ply(stream)
self.assertEqual(verts.shape, (8, 3))
self.assertEqual(faces.shape, (12, 3))
self.assertClose(verts, torch.FloatTensor(CUBE_VERTS))
self.assertClose(faces, torch.LongTensor(CUBE_FACES))
def test_pluggable_load_cube(self):
"""
This won't work on Windows due to NamedTemporaryFile being reopened.
Use the testpath package instead?
"""
ply_file = "\n".join(CUBE_PLY_LINES)
io = IO()
with NamedTemporaryFile(mode="w", suffix=".ply") as f:
f.write(ply_file)
f.flush()
mesh = io.load_mesh(f.name)
self.assertClose(mesh.verts_padded(), torch.FloatTensor(CUBE_VERTS)[None])
self.assertClose(mesh.faces_padded(), torch.LongTensor(CUBE_FACES)[None])
device = torch.device("cuda:0")
with NamedTemporaryFile(mode="w", suffix=".ply") as f2:
io.save_mesh(mesh, f2.name)
f2.flush()
mesh2 = io.load_mesh(f2.name, device=device)
self.assertEqual(mesh2.verts_padded().device, device)
self.assertClose(mesh2.verts_padded().cpu(), mesh.verts_padded())
self.assertClose(mesh2.faces_padded().cpu(), mesh.faces_padded())
with NamedTemporaryFile(mode="w") as f3:
with self.assertRaisesRegex(
ValueError, "No mesh interpreter found to write to"
):
io.save_mesh(mesh, f3.name)
with self.assertRaisesRegex(
ValueError, "No mesh interpreter found to read "
):
io.load_mesh(f3.name)
def test_heterogenous_verts_per_face(self):
# The cube but where one face is pentagon not square.
text = CUBE_PLY_LINES.copy()
text[-1] = "5 3 7 4 0 1"
stream = StringIO("\n".join(text))
verts, faces = load_ply(stream)
self.assertEqual(verts.shape, (8, 3))
self.assertEqual(faces.shape, (13, 3))
def test_save_too_many_colors(self):
verts = torch.tensor(
[[0, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=torch.float32
)
faces = torch.tensor([[0, 1, 2], [0, 2, 3]])
vert_colors = torch.rand((4, 7))
texture_with_seven_colors = TexturesVertex(verts_features=[vert_colors])
mesh = Meshes(
verts=[verts],
faces=[faces],
textures=texture_with_seven_colors,
)
io = IO()
msg = "Texture will not be saved as it has 7 colors, not 3."
with NamedTemporaryFile(mode="w", suffix=".ply") as f:
with self.assertWarnsRegex(UserWarning, msg):
io.save_mesh(mesh.cuda(), f.name)
def test_save_load_meshes(self):
verts = torch.tensor(
[[0, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=torch.float32
)
faces = torch.tensor([[0, 1, 2], [0, 2, 3]])
normals = torch.tensor(
[[0, 1, 0], [1, 0, 0], [1, 4, 1], [1, 0, 0]], dtype=torch.float32
)
vert_colors = torch.rand_like(verts)
texture = TexturesVertex(verts_features=[vert_colors])
for do_textures, do_normals in itertools.product([True, False], [True, False]):
mesh = Meshes(
verts=[verts],
faces=[faces],
textures=texture if do_textures else None,
verts_normals=[normals] if do_normals else None,
)
device = torch.device("cuda:0")
io = IO()
with NamedTemporaryFile(mode="w", suffix=".ply") as f:
io.save_mesh(mesh.cuda(), f.name)
f.flush()
mesh2 = io.load_mesh(f.name, device=device)
self.assertEqual(mesh2.device, device)
mesh2 = mesh2.cpu()
self.assertClose(mesh2.verts_padded(), mesh.verts_padded())
self.assertClose(mesh2.faces_padded(), mesh.faces_padded())
if do_normals:
self.assertTrue(mesh.has_verts_normals())
self.assertTrue(mesh2.has_verts_normals())
self.assertClose(
mesh2.verts_normals_padded(), mesh.verts_normals_padded()
)
else:
self.assertFalse(mesh.has_verts_normals())
self.assertFalse(mesh2.has_verts_normals())
self.assertFalse(torch.allclose(mesh2.verts_normals_padded(), normals))
if do_textures:
self.assertIsInstance(mesh2.textures, TexturesVertex)
self.assertClose(mesh2.textures.verts_features_list()[0], vert_colors)
else:
self.assertIsNone(mesh2.textures)
def test_save_load_with_normals(self):
points = torch.tensor(
[[0, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=torch.float32
)
normals = torch.tensor(
[[0, 1, 0], [1, 0, 0], [1, 4, 1], [1, 0, 0]], dtype=torch.float32
)
features = torch.rand_like(points)
for do_features, do_normals in itertools.product([True, False], [True, False]):
cloud = Pointclouds(
points=[points],
features=[features] if do_features else None,
normals=[normals] if do_normals else None,
)
device = torch.device("cuda:0")
io = IO()
with NamedTemporaryFile(mode="w", suffix=".ply") as f:
io.save_pointcloud(cloud.cuda(), f.name)
f.flush()
cloud2 = io.load_pointcloud(f.name, device=device)
self.assertEqual(cloud2.device, device)
cloud2 = cloud2.cpu()
self.assertClose(cloud2.points_padded(), cloud.points_padded())
if do_normals:
self.assertClose(cloud2.normals_padded(), cloud.normals_padded())
else:
self.assertIsNone(cloud.normals_padded())
self.assertIsNone(cloud2.normals_padded())
if do_features:
self.assertClose(cloud2.features_packed(), features)
else:
self.assertIsNone(cloud2.features_packed())
def test_save_ply_invalid_shapes(self):
# Invalid vertices shape
verts = torch.FloatTensor([[0.1, 0.2, 0.3, 0.4]]) # (V, 4)
faces = torch.LongTensor([[0, 1, 2]])
with self.assertRaises(ValueError) as error:
save_ply(BytesIO(), verts, faces)
expected_message = (
"Argument 'verts' should either be empty or of shape (num_verts, 3)."
)
self.assertTrue(expected_message, error.exception)
# Invalid faces shape
verts = torch.FloatTensor([[0.1, 0.2, 0.3]])
faces = torch.LongTensor([[0, 1, 2, 3]]) # (F, 4)
with self.assertRaises(ValueError) as error:
save_ply(BytesIO(), verts, faces)
expected_message = (
"Argument 'faces' should either be empty or of shape (num_faces, 3)."
)
self.assertTrue(expected_message, error.exception)
def test_save_ply_invalid_indices(self):
message_regex = "Faces have invalid indices"
verts = torch.FloatTensor([[0.1, 0.2, 0.3]])
faces = torch.LongTensor([[0, 1, 2]])
with self.assertWarnsRegex(UserWarning, message_regex):
save_ply(BytesIO(), verts, faces)
faces = torch.LongTensor([[-1, 0, 1]])
with self.assertWarnsRegex(UserWarning, message_regex):
save_ply(BytesIO(), verts, faces)
def _test_save_load(self, verts, faces):
f = BytesIO()
save_ply(f, verts, faces)
f.seek(0)
# raise Exception(f.getvalue())
expected_verts, expected_faces = verts, faces
if not len(expected_verts): # Always compare with a (V, 3) tensor
expected_verts = torch.zeros(size=(0, 3), dtype=torch.float32)
if not len(expected_faces): # Always compare with an (F, 3) tensor
expected_faces = torch.zeros(size=(0, 3), dtype=torch.int64)
actual_verts, actual_faces = load_ply(f)
self.assertClose(expected_verts, actual_verts)
if len(actual_verts):
self.assertClose(expected_faces, actual_faces)
else:
self.assertEqual(actual_faces.numel(), 0)
def test_normals_save(self):
verts = torch.tensor(
[[0, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=torch.float32
)
faces = torch.tensor([[0, 1, 2], [0, 2, 3]])
normals = torch.tensor(
[[0, 1, 0], [1, 0, 0], [0, 0, 1], [1, 0, 0]], dtype=torch.float32
)
file = BytesIO()
save_ply(file, verts=verts, faces=faces, verts_normals=normals)
file.close()
def test_contiguity_unimportant(self):
verts = torch.rand(32, 3)
self._test_save_load(verts, torch.randint(30, size=(10, 3)))
self._test_save_load(verts, torch.randint(30, size=(3, 10)).T)
def test_empty_save_load(self):
# Vertices + empty faces
verts = torch.tensor([[0.1, 0.2, 0.3]])
faces = torch.LongTensor([])
self._test_save_load(verts, faces)
faces = torch.zeros(size=(0, 3), dtype=torch.int64)
self._test_save_load(verts, faces)
# Faces + empty vertices
# => We don't save the faces
verts = torch.FloatTensor([])
faces = torch.LongTensor([[0, 1, 2]])
message_regex = "Empty 'verts' provided"
with self.assertWarnsRegex(UserWarning, message_regex):
self._test_save_load(verts, faces)
verts = torch.zeros(size=(0, 3), dtype=torch.float32)
with self.assertWarnsRegex(UserWarning, message_regex):
self._test_save_load(verts, faces)
# Empty vertices + empty faces
verts0 = torch.FloatTensor([])
faces0 = torch.LongTensor([])
with self.assertWarnsRegex(UserWarning, message_regex):
self._test_save_load(verts0, faces0)
faces3 = torch.zeros(size=(0, 3), dtype=torch.int64)
with self.assertWarnsRegex(UserWarning, message_regex):
self._test_save_load(verts0, faces3)
verts3 = torch.zeros(size=(0, 3), dtype=torch.float32)
with self.assertWarnsRegex(UserWarning, message_regex):
self._test_save_load(verts3, faces0)
with self.assertWarnsRegex(UserWarning, message_regex):
self._test_save_load(verts3, faces3)
def test_simple_save(self):
verts = torch.tensor(
[[0, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0], [1, 2, 0]], dtype=torch.float32
)
faces = torch.tensor([[0, 1, 2], [0, 3, 4]])
for filetype in BytesIO, TemporaryFile:
lengths = {}
for ascii in [True, False]:
file = filetype()
save_ply(file, verts=verts, faces=faces, ascii=ascii)
lengths[ascii] = file.tell()
file.seek(0)
verts2, faces2 = load_ply(file)
self.assertClose(verts, verts2)
self.assertClose(faces, faces2)
file.seek(0)
if ascii:
file.read().decode("ascii")
else:
with self.assertRaises(UnicodeDecodeError):
file.read().decode("ascii")
if filetype is TemporaryFile:
file.close()
self.assertLess(lengths[False], lengths[True], "ascii should be longer")
def test_heterogeneous_property(self):
ply_file_ascii = "\n".join(
[
"ply",
"format ascii 1.0",
"element vertex 8",
"property float x",
"property int y",
"property int z",
"end_header",
"0 0 0",
"0 0 1",
"0 1 1",
"0 1 0",
"1 0 0",
"1 0 1",
"1 1 1",
"1 1 0",
]
)
ply_file_binary = "\n".join(
[
"ply",
"format binary_little_endian 1.0",
"element vertex 8",
"property uchar x",
"property char y",
"property char z",
"end_header",
"",
]
)
data = [0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0]
stream_ascii = StringIO(ply_file_ascii)
stream_binary = BytesIO(ply_file_binary.encode("ascii") + bytes(data))
X = np.array([[0, 0, 0, 0, 1, 1, 1, 1]]).T
YZ = np.array([0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0])
for stream in (stream_ascii, stream_binary):
header, elements = _load_ply_raw(stream)
[x, yz] = elements["vertex"]
self.assertClose(x, X)
self.assertClose(yz, YZ.reshape(8, 2))
def test_load_cloudcompare_pointcloud(self):
"""
Test loading a pointcloud styled like some cloudcompare output.
cloudcompare is an open source 3D point cloud processing software.
"""
header = "\n".join(
[
"ply",
"format binary_little_endian 1.0",
"obj_info Not a key-value pair!",
"element vertex 8",
"property double x",
"property double y",
"property double z",
"property uchar red",
"property uchar green",
"property uchar blue",
"property float my_Favorite",
"end_header",
"",
]
).encode("ascii")
data = struct.pack("<" + "dddBBBf" * 8, *range(56))
io = IO()
with NamedTemporaryFile(mode="wb", suffix=".ply") as f:
f.write(header)
f.write(data)
f.flush()
pointcloud = io.load_pointcloud(f.name)
self.assertClose(
pointcloud.points_padded()[0],
torch.FloatTensor([0, 1, 2]) + 7 * torch.arange(8)[:, None],
)
self.assertClose(
pointcloud.features_padded()[0] * 255,
torch.FloatTensor([3, 4, 5]) + 7 * torch.arange(8)[:, None],
)
def test_load_open3d_mesh(self):
# Header based on issue #1104
header = "\n".join(
[
"ply",
"format binary_little_endian 1.0",
"comment Created by Open3D",
"element vertex 3",
"property double x",
"property double y",
"property double z",
"property double nx",
"property double ny",
"property double nz",
"property uchar red",
"property uchar green",
"property uchar blue",
"element face 1",
"property list uchar uint vertex_indices",
"end_header",
"",
]
).encode("ascii")
vert_data = struct.pack("<" + "ddddddBBB" * 3, *range(9 * 3))
face_data = struct.pack("<" + "BIII", 3, 0, 1, 2)
io = IO()
with NamedTemporaryFile(mode="wb", suffix=".ply") as f:
f.write(header)
f.write(vert_data)
f.write(face_data)
f.flush()
mesh = io.load_mesh(f.name)
self.assertClose(mesh.faces_padded(), torch.arange(3)[None, None])
self.assertClose(
mesh.verts_padded(),
(torch.arange(3) + 9.0 * torch.arange(3)[:, None])[None],
)
def test_save_pointcloud(self):
header = "\n".join(
[
"ply",
"format binary_little_endian 1.0",
"element vertex 8",
"property float x",
"property float y",
"property float z",
"property float red",
"property float green",
"property float blue",
"end_header",
"",
]
).encode("ascii")
data = struct.pack("<" + "f" * 48, *range(48))
points = torch.FloatTensor([0, 1, 2]) + 6 * torch.arange(8)[:, None]
features_large = torch.FloatTensor([3, 4, 5]) + 6 * torch.arange(8)[:, None]
features = features_large / 255.0
pointcloud_largefeatures = Pointclouds(
points=[points], features=[features_large]
)
pointcloud = Pointclouds(points=[points], features=[features])
io = IO()
with NamedTemporaryFile(mode="rb", suffix=".ply") as f:
io.save_pointcloud(data=pointcloud_largefeatures, path=f.name)
f.flush()
f.seek(0)
actual_data = f.read()
reloaded_pointcloud = io.load_pointcloud(f.name)
self.assertEqual(header + data, actual_data)
self.assertClose(reloaded_pointcloud.points_list()[0], points)
self.assertClose(reloaded_pointcloud.features_list()[0], features_large)
# Test the load-save cycle leaves file completely unchanged
with NamedTemporaryFile(mode="rb", suffix=".ply") as f:
io.save_pointcloud(
data=reloaded_pointcloud,
path=f.name,
)
f.flush()
f.seek(0)
data2 = f.read()
self.assertEqual(data2, actual_data)
with NamedTemporaryFile(mode="r", suffix=".ply") as f:
io.save_pointcloud(
data=pointcloud, path=f.name, binary=False, decimal_places=9
)
reloaded_pointcloud2 = io.load_pointcloud(f.name)
self.assertEqual(f.readline(), "ply\n")
self.assertEqual(f.readline(), "format ascii 1.0\n")
self.assertClose(reloaded_pointcloud2.points_list()[0], points)
self.assertClose(reloaded_pointcloud2.features_list()[0], features)
for binary in [True, False]:
with NamedTemporaryFile(mode="rb", suffix=".ply") as f:
io.save_pointcloud(
data=pointcloud, path=f.name, colors_as_uint8=True, binary=binary
)
f.flush()
f.seek(0)
actual_data = f.read()
reloaded_pointcloud3 = io.load_pointcloud(f.name)
self.assertClose(reloaded_pointcloud3.features_list()[0], features)
self.assertIn(b"property uchar green", actual_data)
# Test the load-save cycle leaves file completely unchanged
with NamedTemporaryFile(mode="rb", suffix=".ply") as f:
io.save_pointcloud(
data=reloaded_pointcloud3,
path=f.name,
binary=binary,
colors_as_uint8=True,
)
f.flush()
f.seek(0)
data2 = f.read()
self.assertEqual(data2, actual_data)
def test_load_pointcloud_bad_order(self):
"""
Ply file with a strange property order
"""
file = "\n".join(
[
"ply",
"format ascii 1.0",
"element vertex 1",
"property uchar green",
"property float x",
"property float z",
"property uchar red",
"property float y",
"property uchar blue",
"end_header",
"1 2 3 4 5 6",
]
)
io = IO()
pointcloud_gpu = io.load_pointcloud(StringIO(file), device="cuda:0")
self.assertEqual(pointcloud_gpu.device, torch.device("cuda:0"))
pointcloud = pointcloud_gpu.to(torch.device("cpu"))
expected_points = torch.tensor([[[2, 5, 3]]], dtype=torch.float32)
expected_features = torch.tensor([[[4, 1, 6]]], dtype=torch.float32) / 255.0
self.assertClose(pointcloud.points_padded(), expected_points)
self.assertClose(pointcloud.features_padded(), expected_features)
def test_load_simple_binary(self):
for big_endian in [True, False]:
verts = (
"0 0 0 " "0 0 1 " "0 1 1 " "0 1 0 " "1 0 0 " "1 0 1 " "1 1 1 " "1 1 0"
).split()
faces = (
"4 0 1 2 3 "
"4 7 6 5 4 "
"4 0 4 5 1 "
"4 1 5 6 2 "
"4 2 6 7 3 "
"4 3 7 4 0 " # end of first 6
"4 0 1 2 3 "
"4 7 6 5 4 "
"3 4 5 1"
).split()
short_one = b"\00\01" if big_endian else b"\01\00"
mixed_data = b"\00\00" b"\03\03" + (short_one + b"\00\01\01\01" b"\00\02")
minus_one_data = b"\xff" * 14
endian_char = ">" if big_endian else "<"
format = (
"format binary_big_endian 1.0"
if big_endian
else "format binary_little_endian 1.0"
)
vertex_pattern = endian_char + "24f"
vertex_data = struct.pack(vertex_pattern, *map(float, verts))
vertex1_pattern = endian_char + "fdffdffdffdffdffdffdffdf"
vertex1_data = struct.pack(vertex1_pattern, *map(float, verts))
face_char_pattern = endian_char + "44b"
face_char_data = struct.pack(face_char_pattern, *map(int, faces))
header = "\n".join(
[
"ply",
format,
"element vertex 8",
"property float x",
"property float32 y",
"property float z",
"element vertex1 8",
"property float x",
"property double y",
"property float z",
"element face 6",
"property list uchar uchar vertex_index",
"element irregular_list 3",
"property list uchar uchar vertex_index",
"element mixed 2",
"property list short uint foo",
"property short bar",
"element minus_ones 1",
"property char 1",
"property uchar 2",
"property short 3",
"property ushort 4",
"property int 5",
"property uint 6",
"end_header\n",
]
)
ply_file = b"".join(
[
header.encode("ascii"),
vertex_data,
vertex1_data,
face_char_data,
mixed_data,
minus_one_data,
]
)
metadata, data = _load_ply_raw(BytesIO(ply_file))
self.assertFalse(metadata.ascii)
self.assertEqual(len(data), 6)
self.assertTupleEqual(data["face"].shape, (6, 4))
self.assertClose([0, 1, 2, 3], data["face"][0])
self.assertClose([3, 7, 4, 0], data["face"][5])
[vertex0] = data["vertex"]
self.assertTupleEqual(vertex0.shape, (8, 3))
self.assertEqual(len(data["vertex1"]), 3)
self.assertClose(vertex0, np.column_stack(data["vertex1"]))
self.assertClose(vertex0.flatten(), list(map(float, verts)))
irregular = data["irregular_list"]
self.assertEqual(len(irregular), 3)
self.assertEqual(type(irregular), list)
[x] = irregular[0]
self.assertClose(x, [0, 1, 2, 3])
[x] = irregular[1]
self.assertClose(x, [7, 6, 5, 4])
[x] = irregular[2]
self.assertClose(x, [4, 5, 1])
mixed = data["mixed"]
self.assertEqual(len(mixed), 2)
self.assertEqual(len(mixed[0]), 2)
self.assertEqual(len(mixed[1]), 2)
self.assertEqual(mixed[0][1], 3 * 256 + 3)
self.assertEqual(len(mixed[0][0]), 0)
self.assertEqual(mixed[1][1], (2 if big_endian else 2 * 256))
base = 1 + 256 + 256 * 256
self.assertEqual(len(mixed[1][0]), 1)
self.assertEqual(mixed[1][0][0], base if big_endian else 256 * base)
self.assertListEqual(
data["minus_ones"], [-1, 255, -1, 65535, -1, 4294967295]
)
def test_load_uvs(self):
io = IO()
mesh = io.load_mesh(DATA_DIR / "uvs.ply")
self.assertEqual(mesh.textures.verts_uvs_padded().shape, (1, 8, 2))
self.assertClose(
mesh.textures.verts_uvs_padded()[0],
torch.tensor([[0, 0]] + [[0.2, 0.3]] * 6 + [[0.4, 0.5]]),
)
self.assertEqual(
mesh.textures.faces_uvs_padded().shape, mesh.faces_padded().shape
)
self.assertEqual(mesh.textures.maps_padded().shape, (1, 512, 512, 3))
def test_bad_ply_syntax(self):
"""Some syntactically bad ply files."""
lines = [
"ply",
"format ascii 1.0",
"comment dashfadskfj;k",
"element vertex 1",
"property float x",
"element listy 1",
"property list uint int x",
"end_header",
"0",
"0",
]
lines2 = lines.copy()
# this is ok
_load_ply_raw(StringIO("\n".join(lines2)))
lines2 = lines.copy()
lines2[0] = "PLY"
with self.assertRaisesRegex(ValueError, "Invalid file header."):
_load_ply_raw(StringIO("\n".join(lines2)))
lines2 = lines.copy()
lines2[2] = "#this is a comment"
with self.assertRaisesRegex(ValueError, "Invalid line.*"):
_load_ply_raw(StringIO("\n".join(lines2)))
lines2 = lines.copy()
lines2[3] = lines[4]
lines2[4] = lines[3]
with self.assertRaisesRegex(
ValueError, "Encountered property before any element."
):
_load_ply_raw(StringIO("\n".join(lines2)))
lines2 = lines.copy()
lines2[8] = "1 2"
with self.assertRaisesRegex(ValueError, "Inconsistent data for vertex."):
_load_ply_raw(StringIO("\n".join(lines2)))
lines2 = lines[:-1]
with self.assertRaisesRegex(ValueError, "Not enough data for listy."):
_load_ply_raw(StringIO("\n".join(lines2)))
lines2 = lines.copy()
lines2[5] = "element listy 2"
with self.assertRaisesRegex(ValueError, "Not enough data for listy."):
_load_ply_raw(StringIO("\n".join(lines2)))
lines2 = lines.copy()
lines2.insert(4, "property short x")
with self.assertRaisesRegex(
ValueError, "Cannot have two properties called x in vertex."
):
_load_ply_raw(StringIO("\n".join(lines2)))
lines2 = lines.copy()
lines2.insert(4, "property zz short")
with self.assertRaisesRegex(ValueError, "Invalid datatype: zz"):
_load_ply_raw(StringIO("\n".join(lines2)))
lines2 = lines.copy()
lines2.append("3")
with self.assertRaisesRegex(ValueError, "Extra data at end of file."):
_load_ply_raw(StringIO("\n".join(lines2)))
lines2 = lines.copy()
lines2.append("comment foo")
with self.assertRaisesRegex(ValueError, "Extra data at end of file."):
_load_ply_raw(StringIO("\n".join(lines2)))
lines2 = lines.copy()
lines2.insert(4, "element bad 1")
with self.assertRaisesRegex(ValueError, "Found an element with no properties."):
_load_ply_raw(StringIO("\n".join(lines2)))
lines2 = lines.copy()
lines2[-1] = "3 2 3 3"
_load_ply_raw(StringIO("\n".join(lines2)))
lines2 = lines.copy()
lines2[-1] = "3 1 2 3 4"
msg = "A line of listy data did not have the specified length."
with self.assertRaisesRegex(ValueError, msg):
_load_ply_raw(StringIO("\n".join(lines2)))
lines2 = lines.copy()
lines2[3] = "element vertex one"
msg = "Number of items for vertex was not a number."
with self.assertRaisesRegex(ValueError, msg):
_load_ply_raw(StringIO("\n".join(lines2)))
# Heterogeneous cases
lines2 = lines.copy()
lines2.insert(4, "property double y")
with self.assertRaisesRegex(ValueError, "Inconsistent data for vertex."):
_load_ply_raw(StringIO("\n".join(lines2)))
lines2[-2] = "3.3 4.2"
_load_ply_raw(StringIO("\n".join(lines2)))
lines2[-2] = "3.3 4.3 2"
with self.assertRaisesRegex(ValueError, "Inconsistent data for vertex."):
_load_ply_raw(StringIO("\n".join(lines2)))
with self.assertRaisesRegex(ValueError, "Invalid vertices in file."):
load_ply(StringIO("\n".join(lines)))
lines2 = lines.copy()
lines2[5] = "element face 1"
with self.assertRaisesRegex(ValueError, "Invalid vertices in file."):
load_ply(StringIO("\n".join(lines2)))
lines2.insert(5, "property float z")
lines2.insert(5, "property float y")
lines2[-2] = "0 0 0"
lines2[-1] = ""
with self.assertRaisesRegex(ValueError, "Not enough data for face."):
load_ply(StringIO("\n".join(lines2)))
lines2[-1] = "2 0 0"
with self.assertRaisesRegex(ValueError, "Faces must have at least 3 vertices."):
load_ply(StringIO("\n".join(lines2)))
# Good one
lines2[-1] = "3 0 0 0"
load_ply(StringIO("\n".join(lines2)))
@staticmethod
def _bm_save_ply(verts: torch.Tensor, faces: torch.Tensor, decimal_places: int):
return lambda: save_ply(
BytesIO(),
verts=verts,
faces=faces,
ascii=True,
decimal_places=decimal_places,
)
@staticmethod
def _bm_load_ply(verts: torch.Tensor, faces: torch.Tensor, decimal_places: int):
f = BytesIO()
save_ply(f, verts=verts, faces=faces, ascii=True, decimal_places=decimal_places)
s = f.getvalue()
# Recreate stream so it's unaffected by how it was created.
return lambda: load_ply(BytesIO(s))
@staticmethod
def bm_save_simple_ply_with_init(V: int, F: int):
verts = torch.tensor(V * [[0.11, 0.22, 0.33]]).view(-1, 3)
faces = torch.tensor(F * [[0, 1, 2]]).view(-1, 3)
return TestMeshPlyIO._bm_save_ply(verts, faces, decimal_places=2)
@staticmethod
def bm_load_simple_ply_with_init(V: int, F: int):
verts = torch.tensor([[0.1, 0.2, 0.3]]).expand(V, 3)
faces = torch.tensor([[0, 1, 2]], dtype=torch.int64).expand(F, 3)
return TestMeshPlyIO._bm_load_ply(verts, faces, decimal_places=2)
@staticmethod
def bm_save_complex_ply(N: int):
meshes = torus(r=0.25, R=1.0, sides=N, rings=2 * N)
[verts], [faces] = meshes.verts_list(), meshes.faces_list()
return TestMeshPlyIO._bm_save_ply(verts, faces, decimal_places=5)
@staticmethod
def bm_load_complex_ply(N: int):
meshes = torus(r=0.25, R=1.0, sides=N, rings=2 * N)
[verts], [faces] = meshes.verts_list(), meshes.faces_list()
return TestMeshPlyIO._bm_load_ply(verts, faces, decimal_places=5)