-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
Copy pathtest_sample_farthest_points.py
276 lines (236 loc) · 10.7 KB
/
test_sample_farthest_points.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import numpy as np
import torch
from pytorch3d.io import load_obj
from pytorch3d.ops.sample_farthest_points import (
sample_farthest_points,
sample_farthest_points_naive,
)
from pytorch3d.ops.utils import masked_gather
from .common_testing import (
get_pytorch3d_dir,
get_random_cuda_device,
get_tests_dir,
TestCaseMixin,
)
DATA_DIR = get_tests_dir() / "data"
TUTORIAL_DATA_DIR = get_pytorch3d_dir() / "docs/tutorials/data"
DEBUG = False
class TestFPS(TestCaseMixin, unittest.TestCase):
def _test_simple(self, fps_func, device="cpu"):
# fmt: off
points = torch.tensor(
[
[
[-1.0, -1.0], # noqa: E241, E201
[-1.3, 1.1], # noqa: E241, E201
[ 0.2, -1.1], # noqa: E241, E201
[ 0.0, 0.0], # noqa: E241, E201
[ 1.3, 1.3], # noqa: E241, E201
[ 1.0, 0.5], # noqa: E241, E201
[-1.3, 0.2], # noqa: E241, E201
[ 1.5, -0.5], # noqa: E241, E201
],
[
[-2.2, -2.4], # noqa: E241, E201
[-2.1, 2.0], # noqa: E241, E201
[ 2.2, 2.1], # noqa: E241, E201
[ 2.1, -2.4], # noqa: E241, E201
[ 0.4, -1.0], # noqa: E241, E201
[ 0.3, 0.3], # noqa: E241, E201
[ 1.2, 0.5], # noqa: E241, E201
[ 4.5, 4.5], # noqa: E241, E201
],
],
dtype=torch.float32,
device=device,
)
# fmt: on
expected_inds = torch.tensor([[0, 4], [0, 7]], dtype=torch.int64, device=device)
out_points, out_inds = fps_func(points, K=2)
self.assertClose(out_inds, expected_inds)
# Gather the points
expected_inds = expected_inds[..., None].expand(-1, -1, points.shape[-1])
self.assertClose(out_points, points.gather(dim=1, index=expected_inds))
# Different number of points sampled for each pointcloud in the batch
expected_inds = torch.tensor(
[[0, 4, 1], [0, 7, -1]], dtype=torch.int64, device=device
)
out_points, out_inds = fps_func(points, K=[3, 2])
self.assertClose(out_inds, expected_inds)
# Gather the points
expected_points = masked_gather(points, expected_inds)
self.assertClose(out_points, expected_points)
def _test_compare_random_heterogeneous(self, device="cpu"):
N, P, D, K = 5, 20, 5, 8
points = torch.randn((N, P, D), device=device, dtype=torch.float32)
out_points_naive, out_idxs_naive = sample_farthest_points_naive(points, K=K)
out_points, out_idxs = sample_farthest_points(points, K=K)
self.assertTrue(out_idxs.min() >= 0)
self.assertClose(out_idxs, out_idxs_naive)
self.assertClose(out_points, out_points_naive)
for n in range(N):
self.assertEqual(out_idxs[n].ne(-1).sum(), K)
# Test case where K > P
K = 30
points1 = torch.randn((N, P, D), dtype=torch.float32, device=device)
points2 = points1.clone()
points1.requires_grad = True
points2.requires_grad = True
lengths = torch.randint(low=1, high=P, size=(N,), device=device)
out_points_naive, out_idxs_naive = sample_farthest_points_naive(
points1, lengths, K=K
)
out_points, out_idxs = sample_farthest_points(points2, lengths, K=K)
self.assertClose(out_idxs, out_idxs_naive)
self.assertClose(out_points, out_points_naive)
for n in range(N):
# Check that for heterogeneous batches, the max number of
# selected points is less than the length
self.assertTrue(out_idxs[n].ne(-1).sum() <= lengths[n])
self.assertTrue(out_idxs[n].max() <= lengths[n])
# Check there are no duplicate indices
val_mask = out_idxs[n].ne(-1)
vals, counts = torch.unique(out_idxs[n][val_mask], return_counts=True)
self.assertTrue(counts.le(1).all())
# Check gradients
grad_sampled_points = torch.ones((N, K, D), dtype=torch.float32, device=device)
loss1 = (out_points_naive * grad_sampled_points).sum()
loss1.backward()
loss2 = (out_points * grad_sampled_points).sum()
loss2.backward()
self.assertClose(points1.grad, points2.grad, atol=5e-6)
def _test_errors(self, fps_func, device="cpu"):
N, P, D, K = 5, 40, 5, 8
points = torch.randn((N, P, D), device=device)
wrong_batch_dim = torch.randint(low=1, high=K, size=(K,), device=device)
# K has diferent batch dimension to points
with self.assertRaisesRegex(ValueError, "K and points must have"):
sample_farthest_points_naive(points, K=wrong_batch_dim)
# lengths has diferent batch dimension to points
with self.assertRaisesRegex(ValueError, "points and lengths must have"):
sample_farthest_points_naive(points, lengths=wrong_batch_dim, K=K)
def _test_random_start(self, fps_func, device="cpu"):
N, P, D, K = 5, 40, 5, 8
points = torch.randn((N, P, D), dtype=torch.float32, device=device)
out_points, out_idxs = fps_func(points, K=K, random_start_point=True)
# Check the first index is not 0 or the same number for all batch elements
# when random_start_point = True
self.assertTrue(out_idxs[:, 0].sum() > 0)
self.assertFalse(out_idxs[:, 0].eq(out_idxs[0, 0]).all())
def _test_gradcheck(self, fps_func, device="cpu"):
N, P, D, K = 2, 10, 3, 2
points = torch.randn(
(N, P, D), dtype=torch.float32, device=device, requires_grad=True
)
lengths = torch.randint(low=1, high=P, size=(N,), device=device)
torch.autograd.gradcheck(
fps_func,
(points, lengths, K),
check_undefined_grad=False,
eps=2e-3,
atol=0.001,
)
def test_sample_farthest_points_naive(self):
device = get_random_cuda_device()
self._test_simple(sample_farthest_points_naive, device)
self._test_errors(sample_farthest_points_naive, device)
self._test_random_start(sample_farthest_points_naive, device)
self._test_gradcheck(sample_farthest_points_naive, device)
def test_sample_farthest_points_cpu(self):
self._test_simple(sample_farthest_points, "cpu")
self._test_errors(sample_farthest_points, "cpu")
self._test_compare_random_heterogeneous("cpu")
self._test_random_start(sample_farthest_points, "cpu")
self._test_gradcheck(sample_farthest_points, "cpu")
def test_sample_farthest_points_cuda(self):
device = get_random_cuda_device()
self._test_simple(sample_farthest_points, device)
self._test_errors(sample_farthest_points, device)
self._test_compare_random_heterogeneous(device)
self._test_random_start(sample_farthest_points, device)
self._test_gradcheck(sample_farthest_points, device)
def test_cuda_vs_cpu(self):
"""
Compare cuda vs cpu on a complex object
"""
obj_filename = TUTORIAL_DATA_DIR / "cow_mesh/cow.obj"
K = 250
# Run on CPU
device = "cpu"
points, _, _ = load_obj(obj_filename, device=device, load_textures=False)
points = points[None, ...]
out_points_cpu, out_idxs_cpu = sample_farthest_points(points, K=K)
# Run on GPU
device = get_random_cuda_device()
points_cuda = points.to(device)
out_points_cuda, out_idxs_cuda = sample_farthest_points(points_cuda, K=K)
# Check that the indices from CUDA and CPU match
self.assertClose(out_idxs_cpu, out_idxs_cuda.cpu())
# Check there are no duplicate indices
val_mask = out_idxs_cuda[0].ne(-1)
vals, counts = torch.unique(out_idxs_cuda[0][val_mask], return_counts=True)
self.assertTrue(counts.le(1).all())
# Plot all results
if DEBUG:
# mplot3d is required for 3d projection plots
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d # noqa: F401
# Move to cpu and convert to numpy for plotting
points = points.squeeze()
out_points_cpu = out_points_cpu.squeeze().numpy()
out_points_cuda = out_points_cuda.squeeze().cpu().numpy()
# Farthest point sampling CPU
fig = plt.figure(figsize=plt.figaspect(1.0 / 3))
ax1 = fig.add_subplot(1, 3, 1, projection="3d")
ax1.scatter(*points.T, alpha=0.1)
ax1.scatter(*out_points_cpu.T, color="black")
ax1.set_title("FPS CPU")
# Farthest point sampling CUDA
ax2 = fig.add_subplot(1, 3, 2, projection="3d")
ax2.scatter(*points.T, alpha=0.1)
ax2.scatter(*out_points_cuda.T, color="red")
ax2.set_title("FPS CUDA")
# Random Sampling
random_points = np.random.permutation(points)[:K]
ax3 = fig.add_subplot(1, 3, 3, projection="3d")
ax3.scatter(*points.T, alpha=0.1)
ax3.scatter(*random_points.T, color="green")
ax3.set_title("Random")
# Save image
filename = "DEBUG_fps.jpg"
filepath = DATA_DIR / filename
plt.savefig(filepath)
@staticmethod
def sample_farthest_points_naive(N: int, P: int, D: int, K: int, device: str):
device = torch.device(device)
pts = torch.randn(
N, P, D, dtype=torch.float32, device=device, requires_grad=True
)
grad_pts = torch.randn(N, K, D, dtype=torch.float32, device=device)
torch.cuda.synchronize()
def output():
out_points, _ = sample_farthest_points_naive(pts, K=K)
loss = (out_points * grad_pts).sum()
loss.backward()
torch.cuda.synchronize()
return output
@staticmethod
def sample_farthest_points(N: int, P: int, D: int, K: int, device: str):
device = torch.device(device)
pts = torch.randn(
N, P, D, dtype=torch.float32, device=device, requires_grad=True
)
grad_pts = torch.randn(N, K, D, dtype=torch.float32, device=device)
torch.cuda.synchronize()
def output():
out_points, _ = sample_farthest_points(pts, K=K)
loss = (out_points * grad_pts).sum()
loss.backward()
torch.cuda.synchronize()
return output