-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
Copy pathtest_shapenet_core.py
298 lines (266 loc) · 11.5 KB
/
test_shapenet_core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
"""
Sanity checks for loading ShapeNetCore.
"""
import os
import unittest
import numpy as np
import torch
from PIL import Image
from pytorch3d.datasets import collate_batched_meshes, ShapeNetCore
from pytorch3d.renderer import (
FoVPerspectiveCameras,
look_at_view_transform,
PointLights,
RasterizationSettings,
)
from torch.utils.data import DataLoader
from .common_testing import get_tests_dir, load_rgb_image, TestCaseMixin
# Set the SHAPENET_PATH to the local path to the dataset
SHAPENET_PATH = None
VERSION = 1
# If DEBUG=True, save out images generated in the tests for debugging.
# All saved images have prefix DEBUG_
DEBUG = False
DATA_DIR = get_tests_dir() / "data"
class TestShapenetCore(TestCaseMixin, unittest.TestCase):
def setUp(self):
"""
Check if the ShapeNet dataset is provided in the repo.
If not, download this separately and update the shapenet_path`
with the location of the dataset in order to run the tests.
"""
if SHAPENET_PATH is None or not os.path.exists(SHAPENET_PATH):
url = "https://www.shapenet.org/"
msg = (
"ShapeNet data not found, download from %s, update "
"SHAPENET_PATH at the top of the file, and rerun."
)
self.skipTest(msg % url)
def test_load_shapenet_core(self):
"""
Test loading both the entire ShapeNetCore dataset and a subset of the ShapeNetCore
dataset. Check the loaded datasets return items of the correct shapes and types.
"""
# Try loading ShapeNetCore with an invalid version number and catch error.
with self.assertRaises(ValueError) as err:
ShapeNetCore(SHAPENET_PATH, version=3)
self.assertTrue("Version number must be either 1 or 2." in str(err.exception))
# Load ShapeNetCore without specifying any particular categories.
shapenet_dataset = ShapeNetCore(SHAPENET_PATH, version=VERSION)
# Count the number of grandchildren directories (which should be equal to
# the total number of objects in the dataset) by walking through the given
# directory.
wnsynset_list = [
wnsynset
for wnsynset in os.listdir(SHAPENET_PATH)
if os.path.isdir(os.path.join(SHAPENET_PATH, wnsynset))
]
model_num_list = [
(len(next(os.walk(os.path.join(SHAPENET_PATH, wnsynset)))[1]))
for wnsynset in wnsynset_list
]
# Check total number of objects in the dataset is correct.
self.assertEqual(len(shapenet_dataset), sum(model_num_list))
# Randomly retrieve an object from the dataset.
rand_obj = shapenet_dataset[torch.randint(len(shapenet_dataset), (1,))]
# Check that data types and shapes of items returned by __getitem__ are correct.
verts, faces = rand_obj["verts"], rand_obj["faces"]
self.assertTrue(verts.dtype == torch.float32)
self.assertTrue(faces.dtype == torch.int64)
self.assertEqual(verts.ndim, 2)
self.assertEqual(verts.shape[-1], 3)
self.assertEqual(faces.ndim, 2)
self.assertEqual(faces.shape[-1], 3)
# Load six categories from ShapeNetCore.
# Specify categories with a combination of offsets and labels.
shapenet_subset = ShapeNetCore(
SHAPENET_PATH,
synsets=[
"04330267",
"guitar",
"02801938",
"birdhouse",
"03991062",
"tower",
],
version=1,
)
subset_offsets = [
"04330267",
"03467517",
"02801938",
"02843684",
"03991062",
"04460130",
]
subset_model_nums = [
(len(next(os.walk(os.path.join(SHAPENET_PATH, offset)))[1]))
for offset in subset_offsets
]
self.assertEqual(len(shapenet_subset), sum(subset_model_nums))
def test_collate_models(self):
"""
Test collate_batched_meshes returns items of the correct shapes and types.
Check that when collate_batched_meshes is passed to Dataloader, batches of
the correct shapes and types are returned.
"""
# Load ShapeNetCore without specifying any particular categories.
shapenet_dataset = ShapeNetCore(SHAPENET_PATH)
# Randomly retrieve several objects from the dataset.
rand_idxs = torch.randint(len(shapenet_dataset), (6,))
rand_objs = [shapenet_dataset[idx] for idx in rand_idxs]
# Collate the randomly selected objects
collated_meshes = collate_batched_meshes(rand_objs)
verts, faces = (collated_meshes["verts"], collated_meshes["faces"])
self.assertEqual(len(verts), 6)
self.assertEqual(len(faces), 6)
# Pass the custom collate_fn function to DataLoader and check elements
# in batch have the correct shape.
batch_size = 12
shapenet_core_loader = DataLoader(
shapenet_dataset, batch_size=batch_size, collate_fn=collate_batched_meshes
)
it = iter(shapenet_core_loader)
object_batch = next(it)
self.assertEqual(len(object_batch["synset_id"]), batch_size)
self.assertEqual(len(object_batch["model_id"]), batch_size)
self.assertEqual(len(object_batch["label"]), batch_size)
self.assertEqual(object_batch["mesh"].verts_padded().shape[0], batch_size)
self.assertEqual(object_batch["mesh"].faces_padded().shape[0], batch_size)
def test_catch_render_arg_errors(self):
"""
Test rendering ShapeNetCore with invalid model_ids, categories or indices,
and catch corresponding errors.
"""
# Load ShapeNetCore.
shapenet_dataset = ShapeNetCore(SHAPENET_PATH)
# Try loading with an invalid model_id and catch error.
with self.assertRaises(ValueError) as err:
shapenet_dataset.render(model_ids=["piano0"])
self.assertTrue("not found in the loaded dataset" in str(err.exception))
# Try loading with an index out of bounds and catch error.
with self.assertRaises(IndexError) as err:
shapenet_dataset.render(idxs=[100000])
self.assertTrue("are out of bounds" in str(err.exception))
def test_render_shapenet_core(self):
"""
Test rendering objects from ShapeNetCore.
"""
# Setup device and seed for random selections.
device = torch.device("cuda:0")
torch.manual_seed(39)
# Load category piano from ShapeNetCore.
piano_dataset = ShapeNetCore(SHAPENET_PATH, synsets=["piano"])
# Rendering settings.
R, T = look_at_view_transform(1.0, 1.0, 90)
cameras = FoVPerspectiveCameras(R=R, T=T, device=device)
raster_settings = RasterizationSettings(image_size=512)
lights = PointLights(
location=torch.tensor([0.0, 1.0, -2.0], device=device)[None],
# TODO: debug the source of the discrepancy in two images when rendering on GPU.
diffuse_color=((0, 0, 0),),
specular_color=((0, 0, 0),),
device=device,
)
# Render first three models in the piano category.
pianos = piano_dataset.render(
idxs=list(range(3)),
device=device,
cameras=cameras,
raster_settings=raster_settings,
lights=lights,
)
# Check that there are three images in the batch.
self.assertEqual(pianos.shape[0], 3)
# Compare the rendered models to the reference images.
for idx in range(3):
piano_rgb = pianos[idx, ..., :3].squeeze().cpu()
if DEBUG:
Image.fromarray((piano_rgb.numpy() * 255).astype(np.uint8)).save(
DATA_DIR / ("DEBUG_shapenet_core_render_piano_by_idxs_%s.png" % idx)
)
image_ref = load_rgb_image(
"test_shapenet_core_render_piano_%s.png" % idx, DATA_DIR
)
self.assertClose(piano_rgb, image_ref, atol=0.05)
# Render the same piano models but by model_ids this time.
pianos_2 = piano_dataset.render(
model_ids=[
"13394ca47c89f91525a3aaf903a41c90",
"14755c2ee8e693aba508f621166382b0",
"156c4207af6d2c8f1fdc97905708b8ea",
],
device=device,
cameras=cameras,
raster_settings=raster_settings,
lights=lights,
)
# Compare the rendered models to the reference images.
for idx in range(3):
piano_rgb_2 = pianos_2[idx, ..., :3].squeeze().cpu()
if DEBUG:
Image.fromarray((piano_rgb_2.numpy() * 255).astype(np.uint8)).save(
DATA_DIR / ("DEBUG_shapenet_core_render_piano_by_ids_%s.png" % idx)
)
image_ref = load_rgb_image(
"test_shapenet_core_render_piano_%s.png" % idx, DATA_DIR
)
self.assertClose(piano_rgb_2, image_ref, atol=0.05)
#######################
# Render by categories
#######################
# Load ShapeNetCore.
shapenet_dataset = ShapeNetCore(SHAPENET_PATH)
# Render a mixture of categories and specify the number of models to be
# randomly sampled from each category.
mixed_objs = shapenet_dataset.render(
categories=["faucet", "chair"],
sample_nums=[2, 1],
device=device,
cameras=cameras,
raster_settings=raster_settings,
lights=lights,
)
# Compare the rendered models to the reference images.
for idx in range(3):
mixed_rgb = mixed_objs[idx, ..., :3].squeeze().cpu()
if DEBUG:
Image.fromarray((mixed_rgb.numpy() * 255).astype(np.uint8)).save(
DATA_DIR
/ ("DEBUG_shapenet_core_render_mixed_by_categories_%s.png" % idx)
)
image_ref = load_rgb_image(
"test_shapenet_core_render_mixed_by_categories_%s.png" % idx, DATA_DIR
)
self.assertClose(mixed_rgb, image_ref, atol=0.05)
# Render a mixture of categories without specifying sample_nums.
mixed_objs_2 = shapenet_dataset.render(
categories=["faucet", "chair"],
device=device,
cameras=cameras,
raster_settings=raster_settings,
lights=lights,
)
# Compare the rendered models to the reference images.
for idx in range(2):
mixed_rgb_2 = mixed_objs_2[idx, ..., :3].squeeze().cpu()
if DEBUG:
Image.fromarray((mixed_rgb_2.numpy() * 255).astype(np.uint8)).save(
DATA_DIR
/ ("DEBUG_shapenet_core_render_without_sample_nums_%s.png" % idx)
)
image_ref = load_rgb_image(
"test_shapenet_core_render_without_sample_nums_%s.png" % idx, DATA_DIR
)
self.assertClose(mixed_rgb_2, image_ref, atol=0.05)
def test_load_textures_false(self):
shapenet_dataset = ShapeNetCore(
SHAPENET_PATH, load_textures=False, version=VERSION
)
model = shapenet_dataset[0]
self.assertIsNone(model["textures"])