-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
Copy pathtest_splatter_blend.py
627 lines (544 loc) · 23.2 KB
/
test_splatter_blend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import torch
from pytorch3d.common.compat import meshgrid_ij
from pytorch3d.renderer.cameras import FoVPerspectiveCameras
from pytorch3d.renderer.splatter_blend import (
_compute_occlusion_layers,
_compute_splatted_colors_and_weights,
_compute_splatting_colors_and_weights,
_get_splat_kernel_normalization,
_normalize_and_compose_all_layers,
_offset_splats,
_precompute,
_prepare_pixels_and_colors,
)
from .common_testing import TestCaseMixin
offsets = torch.tensor(
[
[-1, -1],
[-1, 0],
[-1, 1],
[0, -1],
[0, 0],
[0, 1],
[1, -1],
[1, 0],
[1, 1],
],
device=torch.device("cpu"),
)
def compute_splatting_colors_and_weights_naive(pixel_coords_screen, colors, sigma):
normalizer = float(_get_splat_kernel_normalization(offsets))
N, H, W, K, _ = colors.shape
splat_weights_and_colors = torch.zeros((N, H, W, K, 9, 5))
for n in range(N):
for h in range(H):
for w in range(W):
for k in range(K):
q_xy = pixel_coords_screen[n, h, w, k]
q_to_px_center = torch.floor(q_xy) - q_xy + 0.5
color = colors[n, h, w, k]
alpha = colors[n, h, w, k, 3:4]
for d in range(9):
dist_p_q = torch.sum((q_to_px_center + offsets[d]) ** 2)
splat_weight = (
alpha * torch.exp(-dist_p_q / (2 * sigma**2)) * normalizer
)
splat_color = splat_weight * color
splat_weights_and_colors[n, h, w, k, d, :4] = splat_color
splat_weights_and_colors[n, h, w, k, d, 4:5] = splat_weight
return splat_weights_and_colors
class TestPrecompute(TestCaseMixin, unittest.TestCase):
def setUp(self):
self.results_cpu = _precompute((2, 3, 4, 5), torch.device("cpu"))
self.results1_cpu = _precompute((1, 1, 1, 1), torch.device("cpu"))
def test_offsets(self):
self.assertClose(self.results_cpu[2].shape, offsets.shape, atol=0)
self.assertClose(self.results_cpu[2], offsets, atol=0)
# Offsets should be independent of input_size.
self.assertClose(self.results_cpu[2], self.results1_cpu[2], atol=0)
def test_crops_h(self):
target_crops_h1 = torch.tensor(
[
# chennels being offset:
# R G B A W(eight)
[0, 0, 0, 0, 0],
[1, 1, 1, 1, 1],
[2, 2, 2, 2, 2],
[0, 0, 0, 0, 0],
[1, 1, 1, 1, 1],
[2, 2, 2, 2, 2],
[0, 0, 0, 0, 0],
[1, 1, 1, 1, 1],
[2, 2, 2, 2, 2],
]
* 3, # 3 because we're aiming at (N, H, W+2, K, 9, 5) with W=1.
device=torch.device("cpu"),
).reshape(1, 1, 3, 1, 9, 5)
self.assertClose(self.results1_cpu[0], target_crops_h1, atol=0)
target_crops_h_base = target_crops_h1[0, 0, 0]
target_crops_h = torch.cat(
[target_crops_h_base, target_crops_h_base + 1, target_crops_h_base + 2],
dim=0,
)
# Check that we have the right shape, and (after broadcasting) it has the right
# values. These should be repeated (tiled) for each n and k.
self.assertClose(
self.results_cpu[0].shape, torch.tensor([2, 3, 6, 5, 9, 5]), atol=0
)
for n in range(2):
for w in range(6):
for k in range(5):
self.assertClose(
self.results_cpu[0][n, :, w, k],
target_crops_h,
)
def test_crops_w(self):
target_crops_w1 = torch.tensor(
[
# chennels being offset:
# R G B A W(eight)
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[2, 2, 2, 2, 2],
[2, 2, 2, 2, 2],
[2, 2, 2, 2, 2],
],
device=torch.device("cpu"),
).reshape(1, 1, 1, 1, 9, 5)
self.assertClose(self.results1_cpu[1], target_crops_w1)
target_crops_w_base = target_crops_w1[0, 0, 0]
target_crops_w = torch.cat(
[
target_crops_w_base,
target_crops_w_base + 1,
target_crops_w_base + 2,
target_crops_w_base + 3,
],
dim=0,
) # Each w value needs an increment.
# Check that we have the right shape, and (after broadcasting) it has the right
# values. These should be repeated (tiled) for each n and k.
self.assertClose(self.results_cpu[1].shape, torch.tensor([2, 3, 4, 5, 9, 5]))
for n in range(2):
for h in range(3):
for k in range(5):
self.assertClose(
self.results_cpu[1][n, h, :, k],
target_crops_w,
atol=0,
)
class TestPreparPixelsAndColors(TestCaseMixin, unittest.TestCase):
def setUp(self):
self.device = torch.device("cpu")
N, H, W, K = 2, 3, 4, 5
self.pixel_coords_cameras = torch.randn(
(N, H, W, K, 3), device=self.device, requires_grad=True
)
self.colors_before = torch.rand((N, H, W, K, 3), device=self.device)
self.cameras = FoVPerspectiveCameras(device=self.device)
self.background_mask = torch.rand((N, H, W, K), device=self.device) < 0.5
self.pixel_coords_screen, self.colors_after = _prepare_pixels_and_colors(
self.pixel_coords_cameras,
self.colors_before,
self.cameras,
self.background_mask,
)
def test_background_z(self):
self.assertTrue(
torch.all(self.pixel_coords_screen[..., 2][self.background_mask] == 1.0)
)
def test_background_alpha(self):
self.assertTrue(
torch.all(self.colors_after[..., 3][self.background_mask] == 0.0)
)
class TestGetSplatKernelNormalization(TestCaseMixin, unittest.TestCase):
def test_splat_kernel_normalization(self):
self.assertAlmostEqual(
float(_get_splat_kernel_normalization(offsets)), 0.6503, places=3
)
self.assertAlmostEqual(
float(_get_splat_kernel_normalization(offsets, 0.01)), 1.05, places=3
)
with self.assertRaisesRegex(ValueError, "Only positive standard deviations"):
_get_splat_kernel_normalization(offsets, 0)
class TestComputeOcclusionLayers(TestCaseMixin, unittest.TestCase):
def test_single_layer(self):
# If there's only one layer, all splats must be on the surface level.
N, H, W, K = 2, 3, 4, 1
q_depth = torch.rand(N, H, W, K)
occlusion_layers = _compute_occlusion_layers(q_depth)
self.assertClose(occlusion_layers, torch.zeros(N, H, W, 9).long(), atol=0.0)
def test_all_equal(self):
# If all q-vals are equal, then all splats must be on the surface level.
N, H, W, K = 2, 3, 4, 5
q_depth = torch.ones((N, H, W, K)) * 0.1234
occlusion_layers = _compute_occlusion_layers(q_depth)
self.assertClose(occlusion_layers, torch.zeros(N, H, W, 9).long(), atol=0.0)
def test_mid_to_top_level_splatting(self):
# Check that occlusion buffers get accumulated as expected when the splatting
# and splatted pixels are co-surface on different intersection layers.
# This test will make best sense with accompanying Fig. 4 from "Differentiable
# Surface Rendering via Non-differentiable Sampling" by Cole et al.
for direction, offset in enumerate(offsets):
if direction == 4:
continue # Skip self-splatting which is always co-surface.
depths = torch.zeros(1, 3, 3, 3)
# This is our q, the pixel splatted onto, in the center of the image.
depths[0, 1, 1] = torch.tensor([0.71, 0.8, 1.0])
# This is our p, the splatting pixel.
depths[0, offset[0] + 1, offset[1] + 1] = torch.tensor([0.5, 0.7, 0.9])
occlusion_layers = _compute_occlusion_layers(depths)
# Check that we computed that it is the middle layer of p that is co-
# surface with q. (1, 1) is the id of q in the depth array, and offset_id
# is the id of p's direction w.r.t. q.
psurfaceid_onto_q = occlusion_layers[0, 1, 1, direction]
self.assertEqual(int(psurfaceid_onto_q), 1)
# Conversely, if we swap p and q, we have a top-level splatting onto
# mid-level. offset + 1 is the id of p, and 8-offset_id is the id of
# q's direction w.r.t. p (e.g. if p is [-1, -1] w.r.t. q, then q is
# [1, 1] w.r.t. p; we use the ids of these two directions in the offsets
# array).
qsurfaceid_onto_p = occlusion_layers[
0, offset[0] + 1, offset[1] + 1, 8 - direction
]
self.assertEqual(int(qsurfaceid_onto_p), -1)
class TestComputeSplattingColorsAndWeights(TestCaseMixin, unittest.TestCase):
def setUp(self):
self.N, self.H, self.W, self.K = 2, 3, 4, 5
self.pixel_coords_screen = (
torch.stack(
meshgrid_ij(torch.arange(self.H), torch.arange(self.W)),
dim=-1,
)
.reshape(1, self.H, self.W, 1, 2)
.expand(self.N, self.H, self.W, self.K, 2)
.float()
+ 0.5
)
self.colors = torch.ones((self.N, self.H, self.W, self.K, 4))
def test_all_equal(self):
# If all colors are equal and on a regular grid, all weights and reweighted
# colors should be equal given a specific splatting direction.
splatting_colors_and_weights = _compute_splatting_colors_and_weights(
self.pixel_coords_screen, self.colors * 0.2345, sigma=0.5, offsets=offsets
)
# Splatting directly to the top/bottom/left/right should have the same strenght.
non_diag_splats = splatting_colors_and_weights[
:, :, :, :, torch.tensor([1, 3, 5, 7])
]
# Same for diagonal splats.
diag_splats = splatting_colors_and_weights[
:, :, :, :, torch.tensor([0, 2, 6, 8])
]
# And for self-splats.
self_splats = splatting_colors_and_weights[:, :, :, :, torch.tensor([4])]
for splats in non_diag_splats, diag_splats, self_splats:
# Colors should be equal.
self.assertTrue(torch.all(splats[..., :4] == splats[0, 0, 0, 0, 0, 0]))
# Weights should be equal.
self.assertTrue(torch.all(splats[..., 4] == splats[0, 0, 0, 0, 0, 4]))
# Non-diagonal weights should be greater than diagonal weights.
self.assertGreater(
non_diag_splats[0, 0, 0, 0, 0, 0], diag_splats[0, 0, 0, 0, 0, 0]
)
# Self-splats should be strongest of all.
self.assertGreater(
self_splats[0, 0, 0, 0, 0, 0], non_diag_splats[0, 0, 0, 0, 0, 0]
)
# Splatting colors should be reweighted proportionally to their splat weights.
diag_self_color_ratio = (
diag_splats[0, 0, 0, 0, 0, 0] / self_splats[0, 0, 0, 0, 0, 0]
)
diag_self_weight_ratio = (
diag_splats[0, 0, 0, 0, 0, 4] / self_splats[0, 0, 0, 0, 0, 4]
)
self.assertEqual(diag_self_color_ratio, diag_self_weight_ratio)
non_diag_self_color_ratio = (
non_diag_splats[0, 0, 0, 0, 0, 0] / self_splats[0, 0, 0, 0, 0, 0]
)
non_diag_self_weight_ratio = (
non_diag_splats[0, 0, 0, 0, 0, 4] / self_splats[0, 0, 0, 0, 0, 4]
)
self.assertEqual(non_diag_self_color_ratio, non_diag_self_weight_ratio)
def test_zero_alpha_zero_weight(self):
# Pixels with zero alpha do no splatting, but should still be splatted on.
colors = self.colors.clone()
colors[0, 1, 1, 0, 3] = 0.0
splatting_colors_and_weights = _compute_splatting_colors_and_weights(
self.pixel_coords_screen, colors, sigma=0.5, offsets=offsets
)
# The transparent pixel should do no splatting.
self.assertTrue(torch.all(splatting_colors_and_weights[0, 1, 1, 0] == 0.0))
# Splatting *onto* the transparent pixel should be unaffected.
reference_weights_colors = splatting_colors_and_weights[0, 1, 1, 1]
for direction, offset in enumerate(offsets):
if direction == 4:
continue # Ignore self-splats
# We invert the direction to get the right (h, w, d) coordinate of each
# pixel splatting *onto* the pixel with zero alpha.
self.assertClose(
splatting_colors_and_weights[
0, 1 + offset[0], 1 + offset[1], 0, 8 - direction
],
reference_weights_colors[8 - direction],
atol=0.001,
)
def test_random_inputs(self):
pixel_coords_screen = (
self.pixel_coords_screen
+ torch.randn((self.N, self.H, self.W, self.K, 2)) * 0.1
)
colors = torch.rand((self.N, self.H, self.W, self.K, 4))
splatting_colors_and_weights = _compute_splatting_colors_and_weights(
pixel_coords_screen, colors, sigma=0.5, offsets=offsets
)
naive_colors_and_weights = compute_splatting_colors_and_weights_naive(
pixel_coords_screen, colors, sigma=0.5
)
self.assertClose(
splatting_colors_and_weights, naive_colors_and_weights, atol=0.01
)
class TestOffsetSplats(TestCaseMixin, unittest.TestCase):
def test_offset(self):
device = torch.device("cuda:0")
N, H, W, K = 2, 3, 4, 5
colors_and_weights = torch.rand((N, H, W, K, 9, 5), device=device)
crop_ids_h, crop_ids_w, _ = _precompute((N, H, W, K), device=device)
offset_colors_and_weights = _offset_splats(
colors_and_weights, crop_ids_h, crop_ids_w
)
# Check each splatting direction individually, for clarity.
# offset_x, offset_y = (-1, -1)
direction = 0
self.assertClose(
offset_colors_and_weights[:, 1:, 1:, :, direction],
colors_and_weights[:, :-1, :-1, :, direction],
atol=0.001,
)
self.assertTrue(
torch.all(offset_colors_and_weights[:, 0, :, :, direction] == 0.0)
)
self.assertTrue(
torch.all(offset_colors_and_weights[:, :, 0, :, direction] == 0.0)
)
# offset_x, offset_y = (-1, 0)
direction = 1
self.assertClose(
offset_colors_and_weights[:, :, 1:, :, direction],
colors_and_weights[:, :, :-1, :, direction],
atol=0.001,
)
self.assertTrue(
torch.all(offset_colors_and_weights[:, :, 0, :, direction] == 0.0)
)
# offset_x, offset_y = (-1, 1)
direction = 2
self.assertClose(
offset_colors_and_weights[:, :-1, 1:, :, direction],
colors_and_weights[:, 1:, :-1, :, direction],
atol=0.001,
)
self.assertTrue(
torch.all(offset_colors_and_weights[:, -1, :, :, direction] == 0.0)
)
self.assertTrue(
torch.all(offset_colors_and_weights[:, :, 0, :, direction] == 0.0)
)
# offset_x, offset_y = (0, -1)
direction = 3
self.assertClose(
offset_colors_and_weights[:, 1:, :, :, direction],
colors_and_weights[:, :-1, :, :, direction],
atol=0.001,
)
self.assertTrue(
torch.all(offset_colors_and_weights[:, 0, :, :, direction] == 0.0)
)
# self-splat
direction = 4
self.assertClose(
offset_colors_and_weights[..., direction, :],
colors_and_weights[..., direction, :],
atol=0.001,
)
# offset_x, offset_y = (0, 1)
direction = 5
self.assertClose(
offset_colors_and_weights[:, :-1, :, :, direction],
colors_and_weights[:, 1:, :, :, direction],
atol=0.001,
)
self.assertTrue(
torch.all(offset_colors_and_weights[:, -1, :, :, direction] == 0.0)
)
# offset_x, offset_y = (1, -1)
direction = 6
self.assertClose(
offset_colors_and_weights[:, 1:, :-1, :, direction],
colors_and_weights[:, :-1, 1:, :, direction],
atol=0.001,
)
self.assertTrue(
torch.all(offset_colors_and_weights[:, 0, :, :, direction] == 0.0)
)
self.assertTrue(
torch.all(offset_colors_and_weights[:, :, -1, :, direction] == 0.0)
)
# offset_x, offset_y = (1, 0)
direction = 7
self.assertClose(
offset_colors_and_weights[:, :, :-1, :, direction],
colors_and_weights[:, :, 1:, :, direction],
atol=0.001,
)
self.assertTrue(
torch.all(offset_colors_and_weights[:, :, -1, :, direction] == 0.0)
)
# offset_x, offset_y = (1, 1)
direction = 8
self.assertClose(
offset_colors_and_weights[:, :-1, :-1, :, direction],
colors_and_weights[:, 1:, 1:, :, direction],
atol=0.001,
)
self.assertTrue(
torch.all(offset_colors_and_weights[:, -1, :, :, direction] == 0.0)
)
self.assertTrue(
torch.all(offset_colors_and_weights[:, :, -1, :, direction] == 0.0)
)
class TestComputeSplattedColorsAndWeights(TestCaseMixin, unittest.TestCase):
def test_accumulation_background(self):
# Set occlusion_layers to all -1, so all splats are background splats.
splat_colors_and_weights = torch.rand((1, 1, 1, 3, 9, 5))
occlusion_layers = torch.zeros((1, 1, 1, 9)) - 1
splatted_colors, splatted_weights = _compute_splatted_colors_and_weights(
occlusion_layers, splat_colors_and_weights
)
# Foreground splats (there are none).
self.assertClose(
splatted_colors[0, 0, 0, :, 0],
torch.zeros((4)),
atol=0.001,
)
# Surface splats (there are none).
self.assertClose(
splatted_colors[0, 0, 0, :, 1],
torch.zeros((4)),
atol=0.001,
)
# Background splats.
self.assertClose(
splatted_colors[0, 0, 0, :, 2],
splat_colors_and_weights[0, 0, 0, :, :, :4].sum(dim=0).sum(dim=0),
atol=0.001,
)
def test_accumulation_middle(self):
# Set occlusion_layers to all 0, so top splats are co-surface with splatted
# pixels. Thus, the top splatting layer should be accumulated to surface, and
# all other layers to background.
splat_colors_and_weights = torch.rand((1, 1, 1, 3, 9, 5))
occlusion_layers = torch.zeros((1, 1, 1, 9))
splatted_colors, splatted_weights = _compute_splatted_colors_and_weights(
occlusion_layers, splat_colors_and_weights
)
# Foreground splats (there are none).
self.assertClose(
splatted_colors[0, 0, 0, :, 0],
torch.zeros((4)),
atol=0.001,
)
# Surface splats
self.assertClose(
splatted_colors[0, 0, 0, :, 1],
splat_colors_and_weights[0, 0, 0, 0, :, :4].sum(dim=0),
atol=0.001,
)
# Background splats
self.assertClose(
splatted_colors[0, 0, 0, :, 2],
splat_colors_and_weights[0, 0, 0, 1:, :, :4].sum(dim=0).sum(dim=0),
atol=0.001,
)
def test_accumulation_foreground(self):
# Set occlusion_layers to all 1. Then the top splatter is a foreground
# splatter, mid splatter is surface, and bottom splatter is background.
splat_colors_and_weights = torch.rand((1, 1, 1, 3, 9, 5))
occlusion_layers = torch.zeros((1, 1, 1, 9)) + 1
splatted_colors, splatted_weights = _compute_splatted_colors_and_weights(
occlusion_layers, splat_colors_and_weights
)
# Foreground splats
self.assertClose(
splatted_colors[0, 0, 0, :, 0],
splat_colors_and_weights[0, 0, 0, 0:1, :, :4].sum(dim=0).sum(dim=0),
atol=0.001,
)
# Surface splats
self.assertClose(
splatted_colors[0, 0, 0, :, 1],
splat_colors_and_weights[0, 0, 0, 1:2, :, :4].sum(dim=0).sum(dim=0),
atol=0.001,
)
# Background splats
self.assertClose(
splatted_colors[0, 0, 0, :, 2],
splat_colors_and_weights[0, 0, 0, 2:3, :, :4].sum(dim=0).sum(dim=0),
atol=0.001,
)
class TestNormalizeAndComposeAllLayers(TestCaseMixin, unittest.TestCase):
def test_background_color(self):
# Background should always have alpha=0, and the chosen RGB.
N, H, W = 2, 3, 4
# Make a mask with background in the zeroth row of the first image.
bg_mask = torch.zeros([N, H, W, 1, 1])
bg_mask[0, :, 0] = 1
bg_color = torch.tensor([0.2, 0.3, 0.4])
color_layers = torch.rand((N, H, W, 4, 3)) * (1 - bg_mask)
color_weights = torch.rand((N, H, W, 1, 3)) * (1 - bg_mask)
colors = _normalize_and_compose_all_layers(
bg_color, color_layers, color_weights
)
# Background RGB should be .2, .3, .4, and alpha should be 0.
self.assertClose(
torch.masked_select(colors, bg_mask.bool()[..., 0]),
torch.tensor([0.2, 0.3, 0.4, 0, 0.2, 0.3, 0.4, 0, 0.2, 0.3, 0.4, 0.0]),
atol=0.001,
)
def test_compositing_opaque(self):
# When all colors are opaque, only the foreground layer should be visible.
N, H, W = 2, 3, 4
color_layers = torch.rand((N, H, W, 4, 3))
color_layers[..., 3, :] = 1.0
color_weights = torch.ones((N, H, W, 1, 3))
out_colors = _normalize_and_compose_all_layers(
torch.tensor([0.0, 0.0, 0.0]), color_layers, color_weights
)
self.assertClose(out_colors, color_layers[..., 0], atol=0.001)
def test_compositing_transparencies(self):
# When foreground layer is transparent and surface and bg are semi-transparent,
# we should return a mix of the two latter.
N, H, W = 2, 3, 4
color_layers = torch.rand((N, H, W, 4, 3))
color_layers[..., 3, 0] = 0.1 # fg
color_layers[..., 3, 1] = 0.2 # surface
color_layers[..., 3, 2] = 0.3 # bg
color_weights = torch.ones((N, H, W, 1, 3))
out_colors = _normalize_and_compose_all_layers(
torch.tensor([0.0, 0.0, 0.0]), color_layers, color_weights
)
self.assertClose(
out_colors,
color_layers[..., 0]
+ 0.9 * (color_layers[..., 1] + 0.8 * color_layers[..., 2]),
)